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The problem of finding a best L -approximation (I <p < =) to a function in L,
from a special subcone of generalized n-convex functions induced by an ECT-
system is considered. Tchebycheff splines with a countably infinite number of
knots are introduced and best approximations are characterized in terms of local
best approximations by these splines. Various properties of best approximations
and their uniqueness in L, are investigated. Some special results for generalized

monotone and convex cases are obtained. € 1995 Academic Press. Inc.

1. INTRODUCTION

Let /= (a, b). A set of functions U, = {u,}7_J in C*~ (), n > 1, is called
an ECT-system on / in its canonical form if there exist positive weight func-

tions w; in (" '[a,b], 0<i<n~—1, such that for all xe/ [7,15]

Uo(X) = wylx),

1, (X)) =wgy{x) ‘ wy(t))dt,,

Ya

X |

(1.1)

U, l(“\‘):"‘()(x)J M"l([l)J ‘1"2(t2)"'j~ o Wy o l(tn- l)(hn—l"'dtl‘
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424 UBHAYA AND XU

The space V,=span U, is called an ECT-space; it is a Haar space of
dimension #, i.e., any function in ¥, has no more than n —1 zeros in /. For
this reason, functions in ¥V, are called generalized polynomials of degree at
most n— 1.

A real-valued function & on [ is said to be a generalized n-convex
function induced by U, or a U, -convex function if for any #+ 1 points

Xo <Xy < o0 <x, 10 [,

det(u;(x;))} >0, (1.2)

ij=0

with u, = k. Similarly, a generalized n-concave function is defined with >
replaced by <. Let K,=K,(I) be the set of all generalized n-convex func-
tions. The functions in K, {resp. K,) are also called generalized monotone
(resp. convex) functions. We remark that if w;=1 for 0<i<n—1, then
U,={{x—a)'}"-,, and the corresponding K, is the set of ordinary
n-convex functions. It is easy to see that K, is a convex cone considered as
a subset of real functions on /.

For 1<p<o, let L,=L,[) with the norm |-|,. Given K<L, and
feL,, afunction ge K is said to be a best L -approximation to f from X
if |f—gll,=inf{|f—k!,:keK}. The dual cone K" of a set Kc L, is
defined by

oh
KO:{heLq:J hksOforallkeK}, Up+lig=1 (13

o

The dual cone is known to play a significant role in approximation [ 4, 20, 23].

In this work, we are concerned with a special convex subcone K, (S)=
K.(1, S) of K, where S < I This cone will be defined later. We let K, (S)=
K(S)nL,, 1<p<oc. This is a set from which we seek a best approxima-
tion to fe L, When §+#1, K, ,(S) is a proper constrained subcone of K,
in L,; the problem is unconstrained if §'= /. Such subcones arose naturally
in the problems of best constrained approximation ([2] or [3]) which in
turn arose from smoothing and interpolation problems (e.g., [10, 11]).
With this motivation (for further details see [ 5]) the case of L ,-approxima-
tion by the subcone of ordinary n-convex functions was considered in [5];
here a characterization of the dual cone of m-convex functions was
fundamental in establishing the main results. In this article, we investigate
the structure and characterization of a best L -approximation to fin L,
from K, ,(S), the subcone of generalized n-convex functions, for 1 <p <o,
and the uniqueness of the approximation for p=1. All the main results
{included in Sections 3-6) are new even when they are specialized to
L ,-approximation by n-convex functions. In Section 2, we extend certain
results in [5] on dual cone, existence, and basic characterization of a best
approximation to our framwork, and using [9], obtain some properties
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of U,-convex functions. In Section 3, we develop the new concept of
Tchebycheff splines with a countably infinite number of knots, and in
Section 4 we apply it to obtain alternate characterizations of best
approximations which are different from those available for monotone and
n-convex problems in [5, 17, 18]. In Section 5, we investigate the spline-
like structure, boundedness, and uniqueness (in L) of best approximations
under certain conditions. In Section 6, we establish additional characteriza-
tions and uniqueness (in L) for best approximations by generalized
monotone and convex functions.

We now define the subcone K,(S) introduced above. Let u denote the
Lebesgue—Stieltjes complete measure generated by a nondecreasing
function g on I Then, for each Borel set A</t we have p(Ad)=
inf{¥. ", (gb,~—gla)): A=, (a, b)), (a, b,)<=1}, and g is the comple-
tion of this measure on the Borel sets [12]. We denote by D™, D*, and
D, respectively, the left and right derivative and the derivative of a function.
For ke K,,, we define

nr

1 ] k
I k= ! D~ D-~~~—D<—>, for n>2, {14)

W, W,_» wy W

and (I k)() =k(17)/wele), for n=1. We define /, |, and /; analogously
with + replaced by —. Note that /" |k (resp. /&) is right-continuous
{resp. left-continuous) and nondecreasing [7]. Let S< 7 be any Borel set
and §' =7\S. We denote by z, , the Lebesgue-Stieltjes measure generated
by I ,k on I Define a convex subcone of K, by K(S)=K,(]. S)=
{keK, . (S)=0}. Note that each k in K, generates a distinct y,_, and
an associated sigma-field. However, S’ is measurable relative to each g,
since it is a Borel set. Thus, K,(S) is well defined. In particular, K, = K, (1),
K, (@Z)y=V,, and K,(n) is the set of all U,-convex Tchebycheff splines on
I with simple knots at 7= {7, <1, < ..- <1,} =1, where & denotes the
empty set.

The problems of unconstrained L -approximation by ordinary n-convex
functions and generalized convex functions defined by a nonlinear family
are considered in [6, 9, 17-19, 22, 23]. (Recall that 1-convex and 2-convex
functions are monotone nondecreasing and convex, respectively.)

2. EXISTENCE AND BASIC CHARACTERIZATIONS OF A BEST APPROXIMATION

In this section we obtain some properties of U,-convex functions which
will be used in our analysis. We also extend some of the main results of [5]
regarding the dual cone, and the existence and characterization of a best
approximation to our framework as a starting point of this article.
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First, we present alternative definitions of U,-convex functions which
will be used in the sequel. If U,={w}"_), as in (1.1), is a canonical
ECT-system of » functions on [/, then there exists a function u, so that
U, . ={u}"_, forms a canonical ECT-system of n + 1 functions on I [15,
Theorem 9.4 7. For our purpose, we choose w, =1 and let

~ly

u,(x})=wgy(x) JY w,(tl)J wo(t,) ~-~J"7l w,(t,)dt,---dt,.

a a a

For a<xyg<x,< --- <x,<b, we define the nth order divided difference
with respect to U, ., by [xo, xy, .. X, ] f=det(v,(x;))],_o/detu,(x))] g,
where v;=u, for 0<i<n—1 and v,=f [15, p. 368]. Since U,,, is an
ECT-system, det(u,(.\',));"j:o in the denominator of the right hand side of
the above expression is strictly positive. Hence, k& is U,-convex if and only

if, for any n+ | points x,<x, < --- <x, 1n I,
[xgy X1y X, 20, (2.1

Furthermore, expanding the determinant (1.2) asin [ 14, p. 250, Theorem E ],
we may show the following: k is U, convex if and only if, whenever
X, <x,< - <x, are n points in / and heV, satisfies h(x;)=g(x;).
1 <i<n, then

(=1 + Yk()—h(t) =0, fte(x;, ,x), I<isn+1, (22)

where x,=a and x,,,=5b. See also [9, Sect. 1] for other definitions
similar to (2.2). We observe that the interpolating function 4 appearing in
the above definition is unique since det(u,(x;));,_,#0.

We now introduce some notation and terminology. The Green’s function
associated with U, is defined by

" X

G, (x t)= wo(x}J wit,)

!
Iy -2
xj wz(tz)~-~f w, (t,_)dt, ---dt, r<x<b,
! I3

=0, a<x<t.

For n=1, Gyx, t)=wy(x) for t <x<b and zero elsewhere. We construct
a B-spline by '

Bo () =[Xg0 X1, s X1 G y(x, 1), (2.3)

A proof as in [15, Lemma 4.24] shows B, ,(7)>0 if te(x,, x,) and
B, ,(t) =0, otherwise. It follows that G, _,(x, t) is a U,-convex function of
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x for each 1. Let f be a continuous function on /. Following [9], we say
that / has r alternating local extrema if there exist points x, <x, < --- <x,
in / such that exactly one of the following two conditions hold: (i) Points
x; with odd (resp. even) indices are local maxima (resp. minima) with
(= 1) flx;_ ) >(—1)Y fix) for 2<i<r. (i) Points x; with odd (resp.
even) indices are local minima (resp. maxima) with (—1) f(x, )<
{—1) fix;) for 2<i<r. A constant function has zero alternating local
extrema. If f has r local extrema at {x;};_,, then fis monotone (ie., non-
decreasing or nonincreasing) on each (x,_,, x,), | <i<r+ 1, where x,=a
and x, . ; =h.

LemMa 2.1. Let veV,, n=2. Then v/w, has at most n—2 alternating
local extrema in 1.

Proof. The derivatives (u;/wy) of u,/wy, 1 <i<n—1, span an ECT-
space V, _; of dimension n—1. If ve V, then (v/wy) € V,_, and hence,
(v/wy)" has at most n —2 zeros. A subset of these zeros clearly forms the
alternating local extrema of v/w,. §

Letting K, = {k/wy: ke K.}, U, = {u;/w,} "2, . and dividing both sides of
(2.2) by wy(t), we conclude that functions in K, are U -convex on I. By
Lemma 2.1, therefore, all the results of [9] hold for K, since the existence
of alternating local extrema is a condition in that article. The next proposi-
tion gives four properties of U, -convex functions, the first property for
n-convex functions is also observed in [22, p. 236].

ProrosiTiON 2.2, Let k be a U, -convex function, n = 1.

(1} There exist an integer r, 1 <r<n, and points {.\‘,} with a=
Xg< X, < - <X,=b such that the following holds: If r=n, then
(=1)"""kjw, is nondecreasing on (x,_, x;) for all 1 <i<n. If r<n, then
(— 1) k/wy (or equivalently ( —1) k/wg) is nondecreasing on (x,_,, x,) for
all i or nonincreasing on (x;_,, x,) for all i. The integer r and points {x}
depend upon k. Hence, k has at most n sign-changes in 1.

(2) kla*) and k(b™) exist and are possibly infinite. If |k(a™)| =
(resp. |k{b™)| = oc), then (= 1) k(a™)= o (resp. k(b )= w0).

(3y Let [c,d]<l, then k is bounded on [c,d] and — o<
17 keysl k(d)<cc.

n—1
(4) Ifa<xo<x; < ---<x,<b, then [ xy, x,, ..., x,, ]k =0 if and only
if ke V, on (xq, X,).

Proof. (1) If n=1, then k/w, is nondecreasing and hence the state-
ments hold with r=n=1. For n>2, by Lemma 2.1, this is a restatement
of [9, Theorem 2.1(b)] as applied to K,.

640 R8O 310
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(2) By (1), k/w, is monotone (nonincreasing or nondecreasing) on
some interval (a, y) where y e I. Therefore k(a™*)/wy(a*) and hence, k(a™)
exists and is possibly infinite. If x, and 4 are as in the deﬁmtlon (2.2) of &,
then (—1)"k=(—1)"h on (a,x,). But since {hl <o on I, if k{a*)= =
then we must have (—1)" k(¢ )= oc. The proof for point 4 is similar.

(3) If n=1, then —oo <k(c /u(,(c )<< k{t)wolt) <k(d)/wyld) < oo,
tefc¢,d], and since w, is continuous we conclude that & is bounded
on [¢,d]. For n=2, the boundedness of k¥ on [c¢, d] follows from the
continuity of & on [c¢,d]. To prove the remaining statement, let 0 <¢<
min{c—a,b—d}. Then, by [7, Chap XI, Theorem 23], there exists a
U, -convex function k{1, &) such that —oc <17 | kla, &) and k(1, &) = k(1) for
all te(a+e b—¢). Then —oc </7  k(a, .5)<1 kic,e)=1F k(c). By a
symmetric argument, we have l, ( 1) <

(4) Let n=1. Then [\0,.\1]1( 0 if and only if k(xy)/welxe)=
k(x,)/wo(x,). This is equivalent to k = Aw, for some real A since k/w, is
nondecreasmg Now suppose that n> 2 and let J=(x,, x,). We assert that
for some ve ¥V, and for all x,<x<x,,

n—1

k(x) = o(x) + j G, (%, 1) dug (1), (2.4)
J

y (3), I} 1k(xy)> —oc. Hence, by [7, Chap. XI, Lemma 2.2(b)] with
a=x,and b= x,, we conclude that (2.4) holds for all x,<x < x,. Now the
set of functions {G,_,(x,¢):teJ} is equicontinuous in the variable x.
Also, £ and v are continuous. Thus, (24) holds at x, and x, proving our
assertion. Now by applying the linear functional of divided difference
to (2.4) and using (2.3), we obtain [x,, xy, .., x, 1k ={, By (1) du; (1),
since [Xg, Xy, .. x,Jo=0. If [xq,x,,...x, k=0, then |, B, (¢)du; (1)
=0. However, B, ,(1)>0 for all reJ. Hence, u, (J)=0, and, by (24),
we have k=¢v on [xy.x,]. Conversely, if k=u, then, clearly,
[x0. X1, X, Jk=0. |}

For A< L,, we denote by cc(A) and ¢¢,(A), respectively, the smallest
convex cone and the smallest L ,-closed convex cone containing A. Clearly,
cc,(A) is the L, -closure of cc(4). If K<L, is closed convex cone, then a
proper subset M of K is called a generating basis for K if K=7¢c,(M).
The following set of functions M (S) of variable x will be shown to
generate K, (S) if S is closed: M, (S)={tu,(x)0<i<n—1}v
{G,_\(x,1): teS}. In the rest of this section, we state five theorems. Their
proofs are similar to those of {5, Theorems 3.2, 3.5, 4.1, 4.3, and 4.5] and
hence are omitted.

THeOREM 23, K, (S)cec (M, (S), Isp<w,nzl.
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Let / denote the set of all extended real-valued functions on /. For
P < H we define P to be the set of all functions f in H such that i/
pointwise on J for some sequence {f;} in P. Such sets have found
applications in proving the existence of a best approximation [9, 22].
The definition of P given here is as in [9] but weaker than the one in
[22]; however, it will be seen that all the results of [22] hold with this
change.

THEOREM 2.4, Let | <p < oo and nz 1. The following six statements are
equivalent.

(1) S is closed in I (i.e., in the relativized topology for 1.

(2) If {k,} is a sequence in K,(S), such that k; converges pointwise to
a real function k on I, then ke K (5).

(3) K, (S)=K(S)nL,=K/(S)nL

" p

1 <p<oc, is a Tchebycheff set.)

»- (This implies that K, (S),
(4) K,,‘,,(S) is proximinal in L,

(5) K, (S)is closed in L,.

(6) K, (S)=¢c (M, (S)).

n.p

For hel,, we let h°%x)=h(x), and A= w, ()AY "N2)dL,
1 <i<n Recall that the dual cone is defined by (1.3). The following
theorem gives a characterization (X, S1H°, the dual cone of K, (S).

THEOREM 25, Fornzl, 1<p< o, and all S,

K, (S)=(M,(S5))

n.p

={heL, hUb)=0,1<i<n, (-1)"A"(1)<0, 1€ S},

where 1/p+1/g=1.

The next two theorems give characterizations of a best L -approxima-
tion to fel, from K, (S), for 1<p<oo and p=1, respectively.
For 1 <p<oc, uniform convexity of L, ensures uniqueness of a best
approximation.

THEOREM 2.6. Ler l<p<o, nz1, felL\K, (S), geK, (S), and

e=|f—gl" 'sgn(f—g). Define

n,.p

E-={tel(=1)"e"(1)<0}. (2.5)
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Then, g is the best L ,-approximation to [ from K, (S) if and only if the
following three statements hold.

(1) elY(hy=0,1<i<n

(2) (=D"et(1)<0, tes.

{3) g is a generalized polynomial of degree at most n—1 on each
component of the open set E~, or |, eg=0.

THEOREM 2.7. Let p=1,n2>1, fe L\K, |(S), and ge K, (S). Define
Dif—g)={eel,  e=sgn(f—g) ae., where f—g+#0}. (2.6)

Then, g is a best L,-approximation to f from K, (S) if and only if there
exists e € D( [ — g), such that the statements (1), (2), and (3) of Theorem 2.6
are satisfied, where E~ is defined by (2.5) using this e.

3. TcHEBYCHEFF SPLINES WITH COUNTABLE KNOTS

In this section, we develop the new concept of Tchebycheff splines with
a countably infinite number of knots. In the next section we show that such
splines arise naturally in the characterization of a best approximation from
K, ,(S). To attain compatibility with later sections, we develop these
concepts on an arbitrary interval J= (¢, dYc 1 If fis a function on I, we
denote its restriction to J by f|J. Similarly, if F is a set of functions on /,
then F|J denotes the set { f|J: f€ F}. Assume that /, is a finite or countably
infinite family of disjoint open intervals such that

[e. d]=cl<U 1) (3.1)

where cl denotes the closure operation on the reals. Let n be the set
consisting of the endpoints of these intervals; # is called a partition of J. If
7 is finite then the endpoints ¢ and d are in x; however, this may not be
the case if 7 is infinite (see Lemma 3.1 below). If # i1s infinite and for all
arbitrarily small £>0, the interval (c¢+¢& d—¢) contains only a finite
number of points of 7, then = is called a regular infinite partition of J. If
7 is finite or infinite, we let T=T(J, n)={ke C" *(J): ke V|, for all i}.
Clearly, T is a vector space. A function in 7 will be described as a
Tchebycheff spline (relative to U,,) of order n— 1 on J with simple knots at
the points of Jnx. (Since J is open, its endpoints are not in J, although
they may be in zn). If = is finite, then T is the space of ordinary Tchebycheff
splines much investigated in the literature [ 15]. If  1s regular infinite, then
a k in T is a spline with a countable number of knots; furthermore, for any
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&> 0, k is an ordinary spline on {c + ¢, d +¢) with a finite number of knots
at the points of (¢ +&, d—¢&)nn. We let

TI,(J,n)=T(J,7z)mLI,(J), 1<p<a, (3.2)

where L (J)=L,|J is the usual L -space of functions on J. We now define
a subspace 7,(J, n) which is of significance in our analysis. Let

F,={u,0<i<n—1} u{G,_ (-, 1):teJnn}, (3.3)
and
T,(J, =) =cl,(span(F,|J)), (3.4)

where cl, denotes the closure operation in L,(J). Clearly, F, or F,|J is a
linearly independent set; this follows immediately as in the case when 7 is
finite [ 15]. It will be seen in Theorem 3.2 below that 7 (J, ) is a closed
subspace of T,(/J,m). We remark that if n is regular infinite, then T
(J, m) is the pointwise closure of span(F,|J). To see this let ke T(J, =)
and J =(c+¢, d—¢) where ¢>0. Then, as was observed before, k|J' is
an ordinary spline with a finite number of kmots in J'nz Thus
k|J' espan(F,|J') and the result follows. We now collect some properties
of 7 in the following lemma. Its simple proof is left to the reader.

LemMa 3.1. Let J=(c¢,d)< I and n be a partition of J. If 7 is finite then
e,den and n has the form c=ty<t,< - <t,=d with I,=(t,_,t;},
1 <i<m. If 7 is infinite, then 1 is regular if and only if the set of accumula-
tion points of 7 is nonempty and is contained in {c,d}. Furthermore, ¢ or d
is an accumulation point of m if and only if it is not a point of n. In this case
7 has one of the following three possible forms.

(1y w0 o<t < <<y < oo <1< o, where o, dém 1 e,
ttdasi—oc,and [;=(1,_,1;), —oCc <i< .

(2) me=ty<ty<---<t;<---, where cen, démn, t,1d as i - «;
and I,=(t,_, 1), | <i<oc.

{3) m - <t_;< - <t_;<ty=d, a case symmetric to the above.

Recall that ¥, =span{u,;: 0<i<n—1} and let X,,=cl,(span{G, _,(-, 1)
teJnr}). The next theorem gives several properties of T,(J, n) and
T.(J, n). For the proof of parts (1)-(3), we use the methods of [22].

THEOREM 3.2. Let J=(c,dY< I and 7 be a finite or regular infinite
partition of J. Let also | <p < oo, and -], denote the norm in L,(J). Then
the following holds.
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(1) Let (k,) be a sequence of functions in T,(J,7) such that
Ik, |, < D for all j and some D >0. Then there exists a subsequence (h,,) of
(k,) and heT,\J, ) such that h, converges pointwise to h on J and
lhll, < D.

(2) T,J, =) is proximinal in L, (J) and hence closed.

L

(3) T,(J, m) is a closed subspace of T,(J, n) and proximinal in L,(J).
4) T, (J )=V, |J+X,J

Proof. ¥ n is finite then the theorem holds by the theory of ordinary
splines [ 15] and T'(J, ) = T {J, n). Hence we prove the results when 7 is
regular infinite.

(1) Since = is regular infinite, [ ¢, d} =cl({);~, [;) for some disjoint
open intervals I, < J. Since &,,,| [, is a generalized polynomial, i.e,isin V|1,
we have k,,=Y"_ c,, u; on cl(I;), for some numbers ¢,, ,. Now ( |k, l,)
i1s a bounded sequence and, by Lemma 2.1, each k,,/w, has at most n —2
alternating local extrema in 7/, and thus satisfies condition (2) of [22, p.
2247. By {22, Lemma 2.2 ], there exists some interval [, v] </, and M >0
such that |k, (1) < M for all e [u, v] and all m. (In fact, take [u, v] to be
one of [u;,v,] in [22, Lemma 2.2].) Let x;,, 0<j<n—1, be n distinct
point in (u,v). Then, |k, (x)I<M, 0<j<n—1, for all m. Since
det(u,(x))); ', #0, the n values k,(x,), 0<j<n—1, uniquely determine
the coeflicients ¢, ;,, 0 <i<n—1, in the expression for &,,. It follows that
le,, ;| <N for some N >0, for all m and i. Hence, there exists a subsequence
m, of integers and numbers ¢, such that ¢,, ,— ¢, for 0 <7< n-1. Denote
the subsequence (k,,) of (k,,) by f,; and define h=3"_, c,u, on cl(I,).
Then, f) ;— & pointwise on cl(/,). Since ¢, , converge, we conclude that
the ith derivatives f|,— k'" pointwise on cl(/) for 1 <i<n—2. (At the
endpoints of /,, we consider the one-sided derivatives.) Again, by the same
argument applied to the interval /,, we conclude that a subsequence ( f, ;)
of (f, ;) converges pointwise on cl(f,) to a polynomial, say 4, defined on
cl(1,). Also, f5),— h'", 1 <i<n—2, pointwise on cl(/,). If I, and I, have
a common endpoint x, then clearly A is uniquely defined at x; also, 4'/(x),
1<i<n—2, exist. Thus, f,; and its first n—2 derivatives respectively
converge pointwise to 4 and its corresponding derivatives on cl{/, u /).
Applying this argument to each interval /,,, we obtain a subsequence ( f,,, ;)
of (k,) and a function /s defined on cl{{J;_, /;) which have properties as
above. Then the diagonal sequence (h,, = f,, ,,) converges pointwise on J to
h with 17 1 <i<n—2, also converging to 4'". Clearly, he T(J, n).

We show that {|All, < D. Let g, denote the indicator function of 7. /,.
Then |h,x,, |, <h;li, < D. Since h; and h are polynomials on each /; and
h;— h on I, we conclude that ||Ay,, 1|, < D. By the monotone convergence
theorem |4y, ||, 1 IA4ll, and, hence, [Al, < D.
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(2) Let feL,(J) and k,eT,(J,n}) with (f—k,|,—»4=
inf{|f—hl,-heT,(J,n)}. Then, |k,l, is a bounded sequence and,
hence by (1), there exists a subsequence (h,,) of (k,) and heT,(J, n)
with the properties stated there. Since by Fatou’s Lemma, ((f/—hj,<
liminf | f—h,,|,=4, we conclude that |f—hi,=4 and T, J, n) is
proximinal. Finally, proximinality implies closedness.

(3) Since F,|JcT,(J,n) and, by (2), T,(J, n) is closed in L,, we
conclude that T,(J, z) < T,(J, n). Now proximinality of T(J, =) follows as
in (2).

(4) Clearly T}, = T,(J,n) o V,|J and T}, > X,[J. Hence T, >
V,|J+ X,|J. Now V,|J is finite dimensional and X, |J is closed in L,(J).
Hence by [ 8, p. 68, Problem O], we have that V,|J+ X,|J is closed. Since
F,\JcV,|J+ X,|J, we conclude that T, V, |J+ X, [J. |

4. ALTERNATIVE CHARACTERIZATIONS OF A BEST APPROXIMATION

In this section we obtain characterizations of a best approximation from
K, ,(S) in terms of Tchebycheff splines with countable knots defined in the
last section. These characterizations are new and are different from those of
Section 2, and will be used in subsequent sections.

Using the characterization Theorems 2.6 and 2.7 of Section 2 as a
starting point, we introduce some notation which will be used in the rest
of this paper. Let fe L\K, ,(S) and ge K, (S). If 1 <p < o0, then define
e=|f—g|? 'sgn(f~—g) as in Theorem 2.6. If p=1, let D{f—g) as in
(2.6) and ee D(f—g). For all | £p< oo, define £~ by (2.5) and let

E*={rel(—1)"e"(1)>0}, (4.1)
A={xel (1) #0, for te((x — 3, x)u(x, x+J)) " S for some ¢ >0},
(4.2)

B={xele"(1)#0, forte(x—4, x)uU(x, x+6) for some § >0}, (4.3)

and B, = {te B: e!")(¢)=0}. An open interval (c, d) is called a component
of an open set G if (¢, d) = G and ¢, d ¢ G. We leave the simple proof of the
next lemma to the reader.

LemMa 4.1, (1) A and B are open sets.
(2y If J=(c,dycI and J S contains only a finite number of zeros
( possibly none) of '™, then J is contained in some component of A.
(3) B< A, and hence a component of B is contained in some
component of A.
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(4) Let J=\(c¢, d) be a component of A (resp. B) and Z be the set of
zeros of e in JnS (resp. J). Assume Z is infinite. Then the set of
accumulation points of Z is nonempty and is contained in {c,d}. Further-
more, Z is countable.

(5) B, is a countable set, E OEY UB,=B, and cNE WE")=
cE- YucEY)=cl(B).

The next proposition follows unmediately from Lemma 3.1 and 4.1 (4).

PROPOSITION 4.2. Let 1 <p<oc, n=1, feL\K, (S), and g be a best
L -approximation to f from K, [(S). If J=(c,d) is any component of A or
B, then there exists a finite or regular infinite partition n =n, of J having one
of the forms described in Lemma 3.1 such that the points of Jnn are the
zeros of " in I S.

We now define U,-convex functions on an interval J= (¢, d) </ Let
U,={u,}7Z, given by (1.1) be an ECT-system. A real valued function & on
J is said to be U,-convex (on J) if (1.2) holds for any n+ 1 points
Xp<Xx; < --- <x,inJ. Alternative definitions are obtained by replacing the
interval 7 in definitions (2.1) and (2.2) by J. Given w,, 0<i<n—1, as in
Section 1, we may define functions &, 0<i<n—1, by (1.1) with a and b
there replaced by ¢ and d, respectively. Then U, = {4}/, is an ECT-
system on J.If ¥, = span U,, then V¥, is precisely all functions in ¥, restricted
to J, ie., ¥, =V,|J. It may be easily verified that k on J is U,-convex if
and only if it is U, -convex (ie., (1.2) holds with u, replaced there by #,).
It is easy to see that if & defined on [ 1s U,-convex on [, then it is
U,-convex on J. However, if k defined on J is U,-convex on J, then there
may not exist a U,-convex function on I whose restriction to J equals A.
This situation arises if k<{(x)— + oo as x ] c or x1d We denote the set of
all U,-convex functions on J by K,(J). As before we may defined K,(/, §)
as follows. For ke K, (J), let 4, , denote the Lebesgue-Sticltjes measure
generated by /7 k on J. Then K,(J, S)={ke K, (J) fi; (J\S)=0}. We
let K, ,(J,8)=K,(J,8)nL,(J), 1<p<oc. Recall that T,J, n) and
T(J, n) are defined by (3.2)+(3.4).

ProrosiTioN 4.3, Let J=(c,d)< I and n be a finite or a regular infinite
partition of J. Then T,(J, n)n K, (J,S)cT,(J,n), 1<p<o,nzl

Proof. (See [5, Proof of Lemmas 23 and 24]). Let keT,(J,n)n
K, (J.S) and p(z)=1_ k(z), where [ | is defined by (1.4). Then, p is
right continuous and nondecreasing [7]. Let 0 <d<(d—¢)/2 and for
0<e<d, define as in {7, p. 391], plt,e)=plc+e), telc, c+¢g), =plt),
tef{c+e, d—e), and =p(d—¢), te[d—e¢, d). Also define k{1, ¢), 1eJ, by
kit,e)=[,.sG, \(t,x)dp(x,e)+ T _g a;(e) u;(1), n=2, and =p(1 e),
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n=1, where numbers a,(¢) are chosen so that k(-,g)=k on (c+¢&, d—¢).
Let 4, , and u be the Lebesgue-Sticltjes measure generated by p and
pl-, &), respectively, on J. Clearly, g, , =g on (¢ +¢& d—¢]. Since p{-, €) is
constant on each of (¢, ¢ +¢] and (d — ¢, d), we have that y(J\(c +&.d —¢])
=0. Hence, {, G, (t.x)dp(x.e)=Ff .\, 4 jnsGu (6. XVdp(x). If
fe.d]=cl(U; 1) as in (3.1), then since keT,(J, ), we conclude that
k|1, eV, ie. it is generalized polynomial for all i. Hence p is constant
on each [, and f, (J\rm)=4g, (U, 1,)=0. Again, by the regularity of
na =(c+ed—eJnSnn is finite. Hence {, (G, (1.x)dp(x &)=
S e G, x) g o {x}. Tt follows that k(.. ¢)espan(F,|J) for all £>0.
By [5, Lemma 24] as applied to L,(J), we conclude that (-, ¢} -k in
L,(J)as &¢-~0. Hence kecl (span(F,|J)=T,(J, 7). }

LemMa 44, Let 1<p<o, nzl, feL\K, (S), and g be a best
L -approximation to [ from K, (S). If J=(c.d)=! and e'(c)=el'Nd)
=0, 1<ign, then g|J is a best L, (J)approximation to f|J from
K, (J, 8.

n.op

Proof. We prove the result for 1 <p < o, the proof for p =1 is similar.
Let /= f|J and §=g|J. If « corresponds to ¢ when approximating / by
functions in K, (J,S), then a= |f—8)7 Usgn(f—g)=¢ on J. Define
xE3(ey=[lw, () xl sy ds, reJ, where 2™ =a.

We show that the three conditions of Theorem 2.6 hold for a. We first
assert that

by =el'lr), ted, 1<ign. (4.4)

Clearly, x!"l=a=e=e¢l"l Hence by integration, al')s)=el'i(s)—
el ey=¢ell3(1), since el'J(¢)=0. Now el'J{¢)=0, [<i<n, hence,
repeating this process successively or by induction we conclude that (4.4)
holds. Also

{tel (=) al"ly <0} =JnE™. (4.5)

Since g is the best approximation to f from K, ,(S), the three conditions
of Theorem 2.6 hold for ¢. Now by (4.4), (4.5), and the hypothesis, we find
that 2l (d)=0, I1<ign, (—1)"2l"(1)<0 for teJn S and g|J is a
generalized polynomial on each component of the open set J» £7. Hence,
by Theorem 2.6, the required conclusion follows. |}

LEMMA 45, Let xel and (x,) be a sequence in IN{x} such that x,— x.
Suppose that n =1 and he L, satisfies h'" ) x;) =0 for all j. Then h'')(x) =0,
1 i< n. Furthermore, if h''1 is differentiable at x then h(x)=0.

Proof. Clearly, hl"}(x)=0 by the continuity of A!”). Suppose that
nz2. By successive applications of Rolle’s theorem we conclude that,
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for each 1 <i<n—1, there exists a sequence (x;”</\{x} such that
AtI(x7)=0 and x{"—x as j—oo. To prove the required result by
induction assume that Al'l(x)=0 for some 2<i<n. Then (AU1(x}")~
/z“J(.\‘))/(.\'J“”—x):0 for all j Letting j— oc we conclude that
w, (xyhl" Tx)y=0 or Al "'(x)=0. The last statement of the lemma
follows as above. |

We now state and prove our main characterization theorem. The
following notation will be useful in computations. Analogous to /' | and
1| (see 1.4)), for a U, -convex function k define the diflerential operators

n—

1 1 1 1 k
Lk=—D D ---———D<——), 0<ig<n—2, nz2 (46)

W, W W: » w w
i [ iz 1 0

where D denotes the derivative of a function as in Section 1 and [k =
kiw,. Clearly D({I,_,ky=w({,k). Recall that if 1 <p< =, then the best
approximations under consideration are unique.

THEOREM 4.6. Let l<p<o.nzl, feL\K, (S), and ge K, (S). Let
e=|f—gl 'sgn( f—g), and the sets A and B be defined by (4.2) and (4.3).
Then the following five statements are equivalent.

(1) g is the best L,-approximation to f from K, (S).
(2) g=fae on INA, and, on each component J of A, g|J is the best
L (J)-approximation to f|J from K, (J, S).

(3) Reiterate the above statement with A replaced by B.

{4y g=fae on I\NA, and, on each component J of A, g|J is the best
L (JY-approximation to f\J from each of K, (J,S) and T,(J, n), where
7 =1, denotes the finite or regular infinite partition of J formed by the zeros
of eV in I~ S (see Proposition 4.2).

(5) Reiterate the above statement with A replaced by B.

Proof. We prove the results for A, i.e., the equivalence of (1), (2), and
(4). The proof of the equivalence of (1), (3), and (5), the results for B, is
similar. However, since B 4 (Lemma 4.1(3)), some results for B follow
immediately from those of A.

We show that (1) implies (4). Let g be the best approximation to f. Let
xeI\A. It follows directly from the definition of A that there exists a
sequence (x;) = I\{x} such that x;— x and el")(x;) =0 for all j. By Lemma
4.5 with h=e it follows that e!}(x)=0for 1 <i<n, and e(x) =0 if ¢!V is
differentiable at x. Now since ¢!''! is differentiable a.e. on 7, we conclude
that e=0 a.e. on 7\A. This gives g= fae. on I\A.
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Let J={(c, d) be a component of A. Since ¢, de [\A4, as shown above
we have eltd(c)=elI(d)=0, 1<i<n By Lemma 44, g|J is the best
approximation to f'|J from K, ,(J, S).

It now remains to show that ¢=g|J is the best approximation to
f= J1J from T,(J,m). To this end, we first show that g, (E~)=0. By
Theorem 2.6, g ns a generalized polynomial of degree n — 1 on each compo-
nent (x, y) of £7. Hence, by the definition of x, ,, we have g, (x, y)=
(7 8)y)— (7, g)(x)=0. Now E~ is the union of a countable number
of its components Hence, u, (E~)=0. Since ge C" (1), and [¢,d] =
cl(lJ, 1,) as in (3.1), to establish g e T(J, n), it suffices to show that g is a
generahzed polynomial of degree n—1 on each I,=(c, d;), say. By
Theorem 2.6, we have (—1)"¢!”1<0 on S. Since 7, S contains no zeros
of el™ we conclude that (~1)"el"’<0 on I,~S. It follows that
I,nSc E". Since u, ,(E~)=0 as shown above, we have y, (I.nS)=
Again, since g, (S')=0, we have u, (1)=0,ie, (/] glci=, ,gd).
It follows that g is a generalized polynomial of degree n—1 on [,. Thus
e T(J, n), and since ge L, we find §e T,(J, ). Again since g€ K, ,(J, S),
by Proposition 4.3, we conclude that ge T WS 7).

We now show that ¢ is the best apprommatlon to f from T (J, =) or
equivalently, f, ah =0 for all he T, (J, ), where a= 1f g7 sgn(f £)
on J (see the proof of Lemma 44). Now a=¢ on J, T oA, m)=
cl (span(F,|J}), and x* h)—j,ah Leh for he L,(J) is a continuous
linear functional on L,(J). Hence ¢ is the best approximation to f if and
only if e satisfies

np

feu,:o, 0<i<n—1, (4.7)
S
and

J‘eG,P (-,0)=0, teJnrm. (4.8)

We show that (4.7) and (4.8) hold by using the fact that el3(c)=
e'1(d) =0, 1 €i<n, which is established above, and e!"}(t)=0forreJnn
which follows from Proposition 4.2. Integration by parts yields

uld u,;(c)
~j;e“i___e[l](d);r_o_(_(,]l)_etl](c majje[]]“\(llui): —J-Je[lllt‘l(llu,),

where J, are defined by (4.6). Since /,u;,=1, successive integration by
parts gives for 0<i<n—1, (—1) j,eu,—gj el (luy=[, et w, =
(VT 1(d) —el't1(¢)) = 0. Similarly, since /, G, ,(-,¢)=1on [t d) and
0, elsewhere, we have
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(%1]n~1j ()Gn l("a[):J- ()[” l]Mvn lln lanl('a[)
J J

=J el e =(et"Nd) — et (1)) = 0.
(2. d}

We have shown that (1) implies (4).

Clearly, (4) implies (2). We show that (2) implies (1). Let ke K, ,(5)
and J be any component of 4. Then g|J is the best approximation to
f1J from K, (J,S). Since k|{JeK, (J,5), we have [(f—gly,l,<
S =Kk, or Hf—gix/ )< I(f =Ky, where y,. denotes the
indicator function of the set F. Summing the latter inequality over all
(countable) components J of A we obtain [{(f~g)x|J< /=Ky l}.
Since g = f a.e. in J\A4, we conclude that |/ —gl,<if—k|l,. Hence g is
the best approximation to f from K, ,(S). |

The following analogue of the above theorem for p =1 may be similarly
proved using Theorem 2.7. Since p=1, a best approximation is not
necessarily unique.

TureoreM 4.7, Let p=1, n=1, feL\K, (S), and ge K, \(S). Let
D{( [ —g) be defined by (2.6). Then g is a best L -approximation to f from
K, (S} if and only If there exists e D(f —g) satisfving the statements
(2)-(5) of Theorem 4.6 with “the best L,(J)-approximation,” in those
statements replaced by “a best L (J)-approximation,” p replaced by 1, and
the sets A and B defined by (4.2) and (4.3) using this e.

Finally, we remark that in Theorem 4.6, another equivalent statement
{2') may be obtained from statement {2) by letting J = (¢, d) in that state-
ment, where ¢ < d are two endpoints of {possibly different) components of
A (and, in particular J may be a component of 4). This may be justified
by Lemma 4.4. Similar changes may be made in the central part of state-
ment (4) pertaining to K, (J. S). and statements (3) and (5). Similar
remarks apply to Theorem 4.7.

5. PROPERTIES OF BEST APPROXIMATIONS

Throughout this section unless otherwise stated, we assume that
I<p<eowc, nzl, feL\K, (S), and g is a best L -approximation to f
from K, ,(S). We investigate the structure and properties of g, and also its
uniqueness in L,. We use the notation of the last section; in particular, e,
et), and E~ have the meanings given there.

A real function k on [/ is said to be strictly U,-convex on J=(c,dyc/
if [xp,%,,..x,]k>0 for all c<xo<x, <. .- <x,<d The following
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lemma is an extension of [ 17, Lemma 3.2(ii)] and may be proved similarly.
A similar result for convex functions has appeared in [21].

LemMa 5.1, Let ke K, (S)and J=(c¢,d) = I. Assume that k is not strictly
U,-convex on any subinterval of J. Then there exists an infinite (not
necessarily regular) partition n of J such that k|Je T(J, n).

ProposSITION 5.2. Let J=(c,d)c I

(1y If g is strictly U,~convex on J, then g = fa.e. on J.

(2) Ifg#fae onlJ, then ge T(J, n) for some infinite (not necessarily
regular) partition 7 of J.

Proof. (1) By Theorems 2.6 and 2.7, g is a generalized polynomial on
each component of E . Hence we have JnE~ = ¢J and, consequently,
{—1)"e"1 >0 on J. If. for some xeJ, we have (—1)"e!"(x)> 0, then
there exists an open interval J' = (u, v) = J such that (—1}" ¢! >0 on J'.
Then, by Theorems 2.6 and 2.7, we have J' < §' =I\S. Since u, ,(S') =0,
O=p, (J)y=I, (v)—1]_(u). Hence, g is a generalized polynomial on J',
which is a contradiction. It follows that ¢{"J =0 on J. and hence, ¢ =0 a.e.
on J. This gives f=g a.e. on J.

(2) Tt follows that g # f a.e. on any subinterval of J and hence, by
{1), g 1s not strictly U,-convex on any subinterval on J. Now the result
follows from Lemma 5.1. |

A point re S is called a two-sided limit point of S if there exist sequences
(s,,) and (z,,) in § with s,, <t <1, such that s,,—7and 1,,—» ¢ Let $c S

denote all the two-sided limit points of S. If /4 is a function on fand J< [
then we let Z,(h)={teJ: h(1)=0}.

Lemma 53 Let n>2 and J = (c,d) < I Then Z,(el") n $ ¢
Zj(e[n l])'

Proof. Let te Z,(e!")n S. Then there exist sequences (s,,) and (¢,,) in
S with s, <r<t,, such that s, —r and ¢,,— 1. By Theorems 2.6 and 2.7
we have (—1)"e”1<0 on S; in particular, (—~1)"el"J(s,)<0. Since
teZ,(e"}y we have e!”l(t)=0, and hence, (—1)"(el"I(r)—el"1(s,,))/
(t—s5,)>0 Letting m— oc we obtain (—1)"et” '(7)>0. Similarly,
using the sequence (f,,) we obtain (—1)"el"11(#)<0, which gives
e 11y =0,

THEOREM 54. Let J=(c,d)cl In each of the following cases, the
splines are the ordinary Tchebycheff splines (ie., with a finite number of
knots) of degree n—1, and the knots are the zeros of el in JnS. (| x|
denotes the largest integer no larger than x.)
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(V) Iff>gae ondorf<gae ondtheng|Jisa spline with at most
n knots in J.

(2)  Assume that Z (")) c S. Then the following holds.

(1) If f>g ae onJ, then g|J is a spline with at most {_{(n—1)/2}
knots in J.

(1) If f<gae onld, then g|J is a spline with ar most | n/2 | knots
in J.

If J< S, then Z (")) § and (i) and (ii) above hold.

Proof. We provide proofs for | <p < o; the case p =1 may be similarly
argued.

(1) We prove the result for the case f > g a.e. on J; the proof for the
other case is similar. Since f'>g a.. on J we have wye >0 ae. on J. This
implies that el') is strictly increasing on J. Consequently, e!'1 has at most
one zero in J. Hence, its indefinite integral ¢{?! has at most two zeros in
J. Applying this argument in succession or by induction, we conclude that
¢"1 has at most n zeros in J and consequently, in J N S. By Lemma 4.1(2),
J is contained in some component J' of 4. By Theorem 4.6(4), g|J ¢
T,(J', n), where = is the partition of J’ such that points of J'nz are the
zeros of el”! in J'nS as in Proposition 4.2. Since JnS<J' NS and
contains at most »n zeros of ¢l”1, g|J is a spline with at most » knots.

(2) First consider the case n = 1. Note that, by Theorems 2.6 and 2.7,
el'7>00n S. If f>g ae on J, then as in (1), e!'] is strictly increasing on
J. Hence, if for some teJ, el”(t) =0, then e!'1 <0 on (¢, ¢). Since [V >0
on S, there does not exist a sequence (s,,) = S with s, <t and s,, — ¢. This
is a contradiction to the hypothesis that t e §. Hence, ¢{'1#0 on J and e!'!
has no zeros in /N S. If ' <g a.e. on J, then as above, we may show that
¢l'1 has no zeros in J~.S. Now using Lemma 4.1(2) and Theorem 4.6(4),
and arguing as in {1) we conclude that g|J is a spline with no knots. This
proves (i) and (1) for n=1.

Now consider the case n>2. If f>g ae on J, then, as in (1), the
number of zeros of el”! and e!”~'! in J cannot exceed n and n—1,
respectively. Let » be the number of zeros of e!”! in J. By Rolle’s theorem,
there is a zero of el” "' strictly between each pair of adjacent zeros of el"J;
hence there are r — | such zeros in J. Again since Z,(el"]) < S, by Lemma
5.3, we have Z,(e!"}) = Z,(el” 1), Consequently, ¢t” '] has 2r — 1 zeros
in J. Now since 2r — [ <n—1, we conclude that r<| n/2 | If f<g ae. on
J, then by an identical method, we may show that r <[ n/2 |, where r is as
above. Hence, the number of zeros of ¢! in J~ S cannot exceed | n/2 |.
Now using Lemma 4.1(2) and Theorem 4.6(4) and arguing as in (1), we
conclude that g|J is as spline with at most | #/2 ) knots. If # is odd then
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Lr/2 |={{n—1)/2]. Hence we have established (i) where n is odd and (i1)
for all n.

It remains to show (i) where » is even. Assume that #n is even and ("]
has r zeros in J. As shown above r<n/2. Suppose now that r=n/2.
For convenience denote the r zeros of e!") by | <zi<zi< ... <z! .

As before, by Rolle’s theorem and Lemma 5.3, el”~ ') has 7r— l=n—1
1

zeros in J denoted by | '<zj '< ... <z?71, where ' '=:",
i=1,3,5,...n—1. Again, by Rolle’s theorem, applied successively, we
conclude that el 1<j<n—1, has j zeros z{<z{< ... <z/in J where
oiv! <"’<-,’I,'. 1<i< Let t;=:!, 1<ign—1, and r,=z"_,. Then,
fh<t,<---<t, ;=t, and e"}1)}=0, 0<i<n Now f>g ae on J,
hence, w(,e>() a.. on J. Since el'1(1,)=0 we have ¢!'1>0 on (7,,d). B

repeated applications of this argument, we have ¢l/2>0 on (7,, d), and in
particular, ¢[") >0 on (¢,, d). Since 1 is even by Theorem 2.6, ¢!"! <0 on
S. Hence there does not exists a sequence (s,,) < S with ¢, <s,, and s,, —> 1,,.
This contradicts the fact that 1, e Z,(¢!"Y) = $. Thus e[”J has no more than
n/2 — 1 zeros in J, and, hence in J ~ S. Then arguing as before we conclude

that g|/ is a spline with no more than #/2—1=|(n—1)/2] knots. |}

The following example shows that the bounds on the number of knots
in Theorem 5.4 cannot be improved in general. Let I=5=(0,4), n=p=2,
and wo=w,=1. Let f(r)= —t+1, 1 <12, =t-3, 2<t<3, and =0
elsewhere. Then g, the best L,-approximation to f by K, »,(I), is given by
gty=—12+1/4, 0<t<2, and =1/2-7/4, 2<t<4 Clearly, f<g on
{3/2,5/2) and g has one knot in this interval. Again, > g on (1/2, 3/2) and
also on (5/2,7/2), and g has no knots in each of these intervals. This
verifies (i) and (i1) of Theorem 5.4(2).

We now investigate boundedness of a best approximation. We use the
differential operators /7 | and /,, 0<i<n—2, defined by (1.4) and (4.6),
respectively.

THEOREM 5.5. Let n=2. If [ is essentially bounded on a right neigh-
borhood of a and a left neighborhood of b, then g is continuwous and bounded
on I, and can be extended to a continuous function on [a. b]. In particular,
these conclusions about g hold if fe L, or fis continuous and bounded on 1.

Proof. For convenience of notation we use the operator /, , to denote
{7 | in this proof. By Proposition 2.2(2), g{a™) exists. We need to show
that |gla*)] < oo. Assume to the contrary that |g(a™ )| = oc: we show a
contradiction. Define g,=w,(/,g), 0<i<n—1, where go=wyl,g)=g
Note that (l/w,_) D (1/w,_)D---(1/w; ) Dg,/w,=1,_ g which 1is
nondecreasing since g is U,-convex on [ It follows that g, is U, _,-convex
on I, where U, ,={u}" ! [7, p. 386, Theorem 2.1]. Since g may be
obtained from g, by a succession of integral operations, [g(a™¥ )=
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implies |g,(a*)|=oc for 0<i<n—1. By Proposition 2.2(2), we conclude
that (—1)" "ga*)=o, 0<i<n—1. Since w, is continuous on [a, b]
and f is bounded in a neighborhood of a, there exists ¢e[l such that
(=LY g(cy>00r (1) "(Lgic)y>0for0<i<n—1,and (— 1) g{c)>
(—1D)"wyle) flw, ae. on (a, ¢).

Analogous to G, (x,t), let for 0<i<n—1,

H,(,\;,t)=w0(x)J~ w,(tl)J« wz(tz)-'-J w, (L) de, - dt, dty, a<x<t,

X | o

=0, t<x<b,

where H(x, 1} =wqy(x) for x <t and 0, otherwise; H(-,?) is thus right-
continuous. Now define

n—1
Mxy=Y (=1, g)e) Hix, ¢), a<x<c,
i=0 (51)
=g(x), c<x<b.

Note that 4 is a generalized polynomial of degree n— 1 on (a, ¢). It is easy
to verify that (/,h)(c) exists for 0 <i<n—1 and equals (/,g)(¢). Hence A is
U,-convex on [. Now /,_ / equals the constant (/,_, g)(¢) on (a, ¢] and
hence, it is continuous at ¢. (Recall that /, 4 is right-continuous and non-
decreasing.) Let x4 be the Lebesgue-Stieltjes measure generated by /, 4.
Then pu(a, ¢] =0, and hence u(S" n (a, ¢]) =0. Again, since ge K, (S) and
g=h on (¢, b), we conclude that @(S" (¢, b)) =0 giving p(S')=0. Thus
he K, ,(S).

Since (—1)"7'(/;glc)>0, 1 <i<n—1, we obtain by (5.1), (=1)"h>
(=Y o g)c) Hol -, ey =(—1)" glc)wy/wolc) on (a, c). Hence (—1)' h>
(=) f ae on (a,c) If p(ty=(I,_,g)t), it is known that g(x)=
(=D H, ((x.0dp()+ -, (=D thg)e) Hix, ¢), a<x<c. (See,
e.g., [7, p. 388, Eq. (2.26)] with n there replaced by n— 1, however, this
expression should be corrected for minor errors in the exponents of (—1)
within the summation.) This gives

g(x):(—l)"fi'H,,,l(.\',t)dp(t)—l—h(.\‘), a<x<ec. (5.2)

Now (—1)" g(a™)= oo. Hence, by (5.2) we conclude that y, (a,c)>0,
where u, , is the Lebesgue—Stieltjes measure generated by p. Again since
H, ,(,:)>0 on (a,c), we obtain (—1)" g>(—1)"4 on (a,c). Thus
(=1Y'g>(—1)"h>2(—1)" f on (a,c). Hence, Sj; Lf =" <{o1f—gl”
Since h=g on [, b], we conclude that | f—Af, <[ f—gl, and that g is
not a best approximation, a contradiction. Thus |g{a ™' )| < cc. Similarly,
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using [7, p. 384, Eq. (2.9)], we may show that |g(b~)| < cc. Hence g is
bounded on 7; its continuity follows from U,-convexity for n > 2. By letting
glay=gla™) and g(b) =g(b ), we have the resulting continuous extension

to [a,b]. §

The following known result, which is needed for our next theorem,
follows immediately from [7, p. 410, Theorem 5.5].

LEmMMa 56. Let 1<p<o, n=l, and feL\V,. If g is a best
L -approximation to f from V,, then e has at least n sign changes in 1.

THEOREM 5.7. Let fbe U, -concave on I. Then ge V,, and hence, g is also
a best approximation to [ from V,. If p=1 and [ is continuous on [a, b},
then g is unique. (For 1 <p < o, g is unique by the uniform convexity of
L

p)

Proof. If f=g ae, then g is both U, -convex and U, concave; thus
geV,. Now suppose that f#g and hence, e#0 on a set of positive
measure. It follows that ¢!”} #£0 on a set of positive measure. Clearly, g — f
is U,-convex on I. By Proposition 2.2(1), g — f and, hence, ¢ has at most
n sign changes in I. Since e{')(a)=e!'1(h) =0, by Rolle’s theorem, we find
that el'! has at most (n+2)— | separated zeros in [a, b]. (The endpoints
a and b, and possibly small intervals containing each endpoint constitute
two separated zeros.) Applying this argument in succession or by induc-
tion, we conclude that e!”) has at most (n+2)—n =2 separated zeros in
[a, b].

Now let [a, ¢] and [d, ] be the largest intervals such that et")(f) =0 for
tela, c]uld, b). Since el"l(a) =¢!")(b)=0 and e'"! is continuous, such
intervals exist. Again ¢ <d since ") #0 on a set of positive measure. Let
J={(c,d). Then, by the above argument on zeros, ¢[”! has no separated
zeros in J and, hence, no ordinary zeros in J. Since ¢!"1=0 on
[a,c]wd, b], we see that J is a component of B. If = is the partition of
J as in Proposition 4.2, then n: ¢ <d, and T,(J, n)=V,|J. By statement
(5) of Theorems 4.6 and 4.7, we find that g|J is a best L ,(J)-approximation
to f|J from V,|J.

We show that ¢ = ¢ and b =d. This will establish that g e V,, and 1s a best
approximation to f from V,. Suppose to the contrary that a<c¢. Since
el"V=0o0n [a c], we have ¢ =0 a.e. or equivalently, f —g=0 a.e. on (q, ¢).
If n=1, then f —g is U,-concave. Hence ( f — g)/w, 1s nonincreasing and ¢
cannot have any sign changes in J. By Lemma 5.6 with n =1 as applied to
J, we find that ¢ has at least one sign change. This contradiction establishes
that @ = ¢. Similarly, b =d in this case. Now suppose that n > 2. By Lemma
5.6, e and, hence, /' — g has at least » sign changes in J. Since f —g=0 ae.
on {a,c), hy=wl,|(f—g) has n sign changes in J. However, —#, is

640 80 3-11
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U, _-convex on J. This contradicts Proposition 2.2(1) that —#, has at
most n— 1 sign changes in J. Thus @ =c and similarly 6 =d.

If p=1 and f is continuous on [«, »], then g is unique since V, is a
Tchebycheft space. |}

Next, we obtain sufficient conditions to ensure that a best approximation
to fel, from K, (S) i1s unique. Recall that Theorem 24 ensures the
existence of a best approximation if S is closed in /.

THEOREM 5.8. Let n=1 and fe L \K, \(S). Assume that for all J=
(e, d) <=1 and for all finite or regular infinite partitions n of J, f|J has a
unique best L-approximation from T (J, ). Then a best L -approximation
to f from K, ((S), if it exists, is unigue.

Proof. Let g and /4 be two best approximation to f from K, (S). We
show that g=~h ae. By statement (5) of Theorem 4.7 we find that there
exists e € D(f — g) such that g= fa.e. on I\B and on each component J of
B, g|J is a best L,(J)-approximation to f|J from T(J, n), where = is the
finite or regular infinite partition of J formed by the zeros of e["! in Jn S.
Then, the three statements of Theorem 2.7 hold and, in particular, we have
j,eg=0. Now Ae K, (S) and, by a well known result (see, e.g., [4] or
[5]), we have ee (K, (S))°, the dual cone of K, ,(S). Hence [,eh<0.
Since |, =1, we have |f—g|, ={,e(f—g)={,ef <[, e(f—h)<
\ f—hi,. Since || f—gil,=\f—hi,, equality holds throughout in the
above expression, showing that {,eh=0 and |, e(f —h)=|f —hl,. Again
since flell . =1, we conclude that e =sgn(f —#4) ae. on the set {r: f(¢)—
A1) #0}, ie, ee D(f — h) which is defined by (2.6). As observed above, the
first two statements of Theorem 2.7 hold for ¢, and S ,¢h=0; thus, all three
statements hold for ¢ and 4. Now applying statement (S) of Theorem 4.7
for h and e, we conclude that 4= fa.e. on /\B and, on each component J
of B, h|J is a best L,(J)-approximation to f|J from T(J, x). By
hypothesis, g|J = h|J a.e. on each component J of B giving g=/h ae. on B.
Again, g= f=h ae on I\B, and hence, g=h ae. on [ ||

THEOREM 5.9. Let n=1, [ be continuous on [a, b] and g be a best
L, -approximation to f from K, |(S). Let e and B be as in statement (5) of
Theorem 4.7. Assume that {— g has a finite number of sign changes in each
component of B or that S is finite. Then g is the unique best approximation
to f from K, (S). In particular, g is unique if f —g has a finite number of
sign changes in I.

Proof. Let J=(c,d) be a component of B. Exactly as in the proof of
Theorem 4.6, by applying Lemma 4.5, we may show that ell{c)=
el'Nd)=0, 1 <i<n If m is the finite number of sign changes of f —g in J,
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then, by Rolle’s theorem, el') has at most (m+2)—1 separated zeros in
[c, d]. Applying this argument in succession, or by induction, we conclude
that e'”) has at most (m+2)—n separated zeros in [c¢,d]. Now, by
Lemma 4.1(4), the set of zeros of e!”! in J is countable. Hence ¢!"1 cannot
be identically equal to zero on any nondegenerate subinterval of [c¢, d].
Therefore, 73 has at most m —n + 2 ordinary zeros in [ ¢, 4], and at most
m—n, ie., a finite number of zeros in J. If 7 is the partition of J formed
by the zeros of ¢! in J~ S as in Theorem 4.7, then = is finite. Hence
Ti(J,n)=T,(J, n) is the space of ordinary Tchebycheft splines on J with
simple knots in Jnz. Since f is continuous on [c¢, d], by the theory of
Property A [13] as applied to the ECT system and T,(J, n), we conclude
that a best approximation to f|J from 7,(J, n) is unique. Then the result
follows as in Theorem 5.7. If S is finite, then again = is finite and the above
arguments establish the result. The last statement of the theorem also
follows as above. ]

6. APPROXIMATION BY GENERALIZED MONOTONE AND CONVEX FUNCTIONS

In this section we consider the problem of finding a best L -approxi-
mation to f from K, ,(S) for =1 and 2. We derive stronger characteri-
zation theorems than those in Section 4 and establish the uniqueness of
L,-approximation. A function & in K, (K, with n=1) is called a
generalized monotone (nondecreasing) function and is defined by k(x)/
wolx) < k(y)/wely) if x <y as may be easily verified. The functions in K,
are called generalized convex functions. Recall that £~ and E™* are defined
by (2.5) and (4.1), respectively, and $ and Z, are defined in Section 5.

THEOREM 6.1. Let l<p<oc,n=1or2, feL\K, (S) andgeK, (S).
If n=2, assume additionally that Z,(e"*1yc S. Then the following four
statements are equivalent.

(1) g is the best L -approximation to f from K, (S).

(2) elI(b)y=0 for 1 <ign, (—1)" el (1) <0 for teS, and, on each
component J of E~, g|JeV,|J.

(3) eliXp)y=0 for 1<igsn, (-1)"el"Ne)<0 for t€8, and. on each
component J of E~, g|J is the best L,(J)-approximation to f|J from V, |J.

(4) g=fae on INE UE™"), and, on each component J of E™ or
E*, gl|J is the best L,(J)-approximation to f|J from each of V,6|J
and K, (J, S).

n.p

Proof. We first establish the theorem for n=1. The equivalence of (1)
and (2) is a restatement of Theorem 2.6 for n = 1. We simultaneously show
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that (1) or (2) implies (3) and (4). Let g be the best approximation to f.
If J={(c, d) is a component of E~, then by (2), g|Je V,|J. If Jis a compo-
nent of E*, then, since ¢l'7>0 on S by (2), we must have Jc I\S=S".
Hence 4, (J)=pu, (S')=0. Thus g =aw, on J for some «, and g|Je V,}J.
Now, let J={(c, d) be a component of £~ or £*. Then by the definition
of E- and E*, we have el')(c)=el'l(d)=0. Hence, by Lemma 4.4 with
n=1, we conclude that g|/ is the best approximation to f|J from
K, ,(J,S). But since g|Je V||J< K ,(J,S), we find that g|J is also the
best approximation to f|J from V,]J. By Theorem 4.6(5), we have g=f
a.e. on /\B. By Lemma 4.1(5), B=E~ U E* U B,, where B, is a countable
set and hence its Lebesgue measure is zero. It follows that g=f a.e. on
IN(E~ UE™). Thus (3) and (4) are established. Clearly, (3) implies (2).
Now we may show (4) implies (1) by a proof similar to the one used to
establish that statement (2) implies statement {1) in Theorem 4.6. Thus, the
four statements are equivalent for n=1.

Now let n=2 and J= (¢, d) be a component of E~ or E*. By the defini-
tions of £~ and E* we conclude that e'?){(¢)=¢'?1(d)=0. By Lemma 5.3
with n=2 we have Z,(e!?!) = Z,(e!']). Hence el'l(c)=¢!'1(d)=0. Now,
by Lemma 4.4 with n =2 we find that g|J is the best approximation to f
from K, ,(J, S). The rest of the proof is similar to the case n=1. |

The following analogue of Theorem 6.1 for p=1 may be proved by
similar methods.

THEOREM 6.2. Let p=1, n=10r 2, fe L\K, (S), and ge K, (S). If
n=2, assume additionally that Z (') c S. Then g is a best L,-approxima-
tion to f from K, ((S) if and only if there exists e e D(f—g) satisfying
one of the statements (2), (3), and (4) of Theorem 6.1 with “the best
L,(J)-approximation™ in those statements replaced by “a best L (J)-approxi-
mation,” p replaced by 1, and the sets E~ and E™ defined by using this e.

We remark that in Theorem 6.1 another equivalent statement (4') may
be obtained from statement (4) by replacing its part “on each component
J of E- or E*, g|J is the best L,(J)-approximation to f|J from
K, ,(J, 8)” by the following: “If J = (¢, d), where ¢ <d are any two zeros of
e (and, in particular, if J is a component of £~ or E*), then g|J is the
best L,(J)-approximation to [/ from K, ,(J/, S).” This may be justified by
Lemma 4.4. The part of (4) pertaining to the best L,(J/)-approximation
from V,|J remains unchanged. Similar remarks apply to Theorem 6.2 also.

Next we investigate the continuity properties of a best L ,-approximation
from K, (S). Recall that the functions in K, ,(S), » =2, are continuous on
I. We observe that if g is a generalized monotone function then, by
Proposition 2.2(2), g(x ) and g(x*) exist for each x in I. Given x e[ and
an open interval J < I we write J — x and say “J shrinks to x” whenever
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J=(x—0,,x+46,) with 4,20, §,20 and &, +J,>0 {(so that xecl(J))
and 6,10, 6,10 [1]. We denote by int(S) and bd(S), the interior and
boundary of S. In the following 4 is the Lebesgue measure on /.

THEOREM 6.3. Let 1<p<oc, feL\K, ,(S), and g be a best
L -approximation to f from K| (§). Then the following holds.

(1) g is continuous at each xe 8" =1I\S. If xe S and ¢!'(x)> 0, then
g Is continuous at x.

(2) Let xeint(S), el'Yx)=0, and P <1 be any measurable ser such
that

MPAJYMIH =0, as J-ox (6.1)
If P'=1I\P; then

lim ess inf{ f(1): te P', ¢ ] x}
<glxT)<glxr)<limesssup{ f(1): te P, ¢t ] x}. (6.2)

Remark. Condition (6.1) imphes AP nJ)/A(J)— 1, hence, in (6.2)
there exist re P’ with 711 x and 7} x.)

Proof. (1) Suppose that g is discontinuous at xel Then g(x*)>
g(x7). The Lebesgue-Stieltjes measure 4, ; generated by g(r™ )/w,(1) coin-
cides with that generated by g(r)/wy(?), and u, {x} =(g(x*)—gx "))/
wolx}>0 [ 12, Proposition 3.9]. Hence xe S. If ¢{'1(x)> 0 for some x e/,
then xe £~ and, by Theorem 6.1(2), there exists x such that g=aw, on
{x -0, x+0) for some é>0. Hence g is continuous at x.

(2) We outline the proof. If 0 denotes the right side of (6.2), we
assume 0 <g(x*). Then show that e{'}(s) <0 for all s sufficiently close to
x. By Theorem 6.1(2), se I\S=S". Hence x ¢int(S), a contradiction. Thus
gxT)<d. |

We say that fon 7 is p-approximately continuous at x e/ if there exists
a measurable set P < [ such that (6.1) holds and f| P’ is continuous where
P'=]\P. Note that l-approximate continuity is identical to the well
known approximate continuity [ 1]. Clearly, p-approximate continuity for
p>1 implies l-approximate continuity. If f is continuous on I, then, by
taking P=¢J in (6.1), we see that f is p-approximately continuous.
Theorem 6.3 then at one gives us the following.

THEOREM 6.4. Assume the hypothesis of Theorem 6.3. If [ is p-approxi-
mately continuous on int(S), then g is continuous on I\bd(S). In particular,
this conclusion holds if f is continuous on int(S).
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The following example show that the results of the above theorem
cannot be strengthened. Let I=(0, 1), S={1/2}, p=2, wy=1, and
fix}=x on I Then K, ,(S) is the set of nondecreasing functions which are
constant on (0, 1/2) and {1/2, 1) with a possible jump at 1/2. Then, g, the
best L,-approximation to f from K, ,(.S) is given by g(x)=1/4, 0 <x <1/2
and g(x)=3/4, 12<x<1.

For the problem of unconstrained L,-approximation by nondecreasing
functions, [ 16] shows that g is continuous if /'is approximately continuous
(their proof holds only for p=1). We are motivated by their result and
proof to introduce the condition {6.1) and p-approximate continuity so
that one single result (6.2) could be obtained for all | <p< o under
uniform assumptions in our more general framework.

We next establish the uniqueness of best approximation from K, ,(.5),
n=1,2.

THEOREM 6.5. Let n=1 or 2, and [ be continuous on [a, b]. If n=2,
assume additionally that Z,(e'*1yc S. Then a best L,-approximation to f
Srom K, (8), if it exists, is unique.

Proof. Let J be any component of E~ or E* as in statement (3) of
Theorem 6.2. Since f is continuous on cl(.J), by the theory of Property A
[13] applied to V,|J as in Theorem 5.8, a best approximation to /'|J from
V,lJ i1s unique. Then the required result follows by statement (3) of
Theorem 6.2 in the same way as Theorems 5.7 and 5.8 follow from
statement (5) of Theorem 4.7. |
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