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The problem of finding a best Lp-approximation (I ~p < ex) to a function in L p

from a special subcone of generalized n-convex functions induced by an ECT­
system is considered. Tchebycheff splines with a countably infinite number of
knots are introduced and best approximations are characterized in terms of local
best approximations by these splines. Various properties of best approximations
and their uniqueness in L, are investigated. Some special results for generalized
monotone and convex cases are obtained. '1995 Academic Press. Inc.

I. INTRODUCTION

Let I = (a, b). A set of functions Un = {II;} 7:d in C'~ l(l), n ~ I, is called
an ECT-system on I in its canonical form if there exist positive weight func­
tions Wi in C'- i[a, b], 0 ~ i ~ 1/-1, such that for all x E 1[7,15]

udx) = wo(.") I" WI(t l ) dt],
~(/

(1.1 )

u" I(X)=wo(X)j"'wl(t l )f'W2(t2)···f"- wn_I(t" l)dt,,_I···dt l .
a a a
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The space V" = span U" is called an ECT-space; it is a Haar space of
dimension /1, i.e., any function in V" has no more than n - I zeros in I. For
this reason, functions in V" are called generalized polynomials of degree at
most n -1.

A real-valued function k on 1 is said to be a generalized /1-convex
function induced by U" or a U,,-convex function if for any /1 + I points
xo < x, < ... < x" in I,

( 1.2)

with U" = k. Similarly, a generalized n-concave function is defined with ~

replaced by :;;:;. Let K" = K,,( I) be the set of all generalized n-convex func­
tions. The functions in K, (resp. K2 ) are also called generalized monotone
(resp. convex) functions. We remark that if Wi = I for 0:;;:; i:;;:; n - I, then
U" = { (x - a r} 7~ (;, and the corresponding K" is the set of ordinary
n-convex functions. It is easy to see that K" is a convex cone considered as
a subset of real functions on I.

For I:;;:;p<u::" let L,,=Lp(1) with the norm HII" Given KeLp and
f E L", a function g E K is said to be a best Lp-approximation to f from K
if Ilf-g1Ip=inf{!lf-kt,:kEK}. The dual cone K O of a set KeLp is
defined by

I/p+ I/q= I. (J 31

The dual cone is known to playa significant role in approximation [4, 20, 23 ].
In this work, we are concerned with a special convex subcone K,,( S) =

K,,( I, S) of K" where S e l. This cone will be defined later. We let K".p( S) =
K,,( S) (\ Lp , 1 :;;:; p < 00. This is a set from which we seek a best approxima­
tion to f E L". When S =1= I, K II • ,,( S) is a proper constrained subcone of K"
in L,,; the problem is unconstrained if S = I. Such subcones arose naturally
in the problems of best constrained approximation ([ 2J or [3 J) which in
turn arose from smoothing and interpolation problems (e.g., [10, II J).
With this motivation (for further details see [5]) the case of LI'-approxima­
tion by the subcone of ordinary n-convex functions was considered in [5 J;
here a characterization of the dual cone of n-convex functions was
fundamental in establishing the main results. In this article, we investigate
the structure and characterization of a best L,,-approximation to f in L"
from K".p(S), the subcone of generalized n-convex functions, for 1 :;;:;p < oc,
and the uniqueness of the approximation for p = 1. All the main results
(included in Sections 3-6) are new even when they are specialized to
L,,-approximation by n-convex functions. In Section 2, we extend certain
results in [5] on dual cone, existence, and basic characterization of a best
approximation to our framwork, and using [9J, obtain some properties
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of U,,-convex functions. In Section 3, we develop the new concept of
Tchebycheff splines with a countably infinite number of knots, and in
Section 4 we apply it to obtain alternate characterizations of best
approximations which are different from those available for monotone and
Il-convex problems in [5, 17, 18]. In Section 5, we investigate the spline­
like structure, boundedness, and uniqueness (in L I) of best approximations
under certain conditions. In Section 6, we establish additional characteriza­
tions and uniqueness (in L I ) for best approximations by generalized
monotone and convex functions.

We now define the subcone K,,(S) introduced above. Let Ii denote the
Lebesgue-Stieltjes complete measure generated by a nondecreasing
function g on I. Then, for each Borel set A c I, we have Jl(A) =
inf{L/~ I (g(h i - g(ail): A c U;: I (a j , hi)' (a j , hi) c I}, and Ii is the comple­
tion of this measure on the Borel sets [12]. We denote by D -, D +, and
D, respectively, the left and right derivative and the derivative of a function.
For k E K", we define

+ I + I I (k)I" ,k=--D --D .. ·-D - ,
\I'" _) H',,_2 WI It'o

for 11 ~ 2, ( 1.4)

and (/(~ k)( f) = k(t + )/W(J( f), for 11 = 1. We define I" I and 1(-; analogously
with + replaced by -. Note that 1,7- I k (resp. I,~_ I k) is right-continuous
(resp. left-continuous) and nondecreasing [7]. Let ScI be any Borel set
and S' = I\S. We denote by !lk." the Lebesgue-Stieltjes measure generated
by I,; )k on l. Define a convex subcone of K" by K,,(S) = K,,(l, S) =
{k E K,,: Jl k. ,,( S' ) = O}. Note that each k in K" generates a distinct Jl k." and
an associated sigma-field. However, S' is measurable relative to each Jlk."
since it is a Borel set. Thus, K,,( S) is well defined. In particular, K" = K,,(l),
K,,( 0) = Vll , and K,,(][) is the set of all UlI-convex Tchebycheff splines on
1 with simple knots at ][ = {t I < t 2 < ... < f",} c I, where 0 denotes the
empty set.

The problems of unconstrained Lp-approximation by ordinary l1-convex
functions and generalized convex functions defined by a nonlinear family
are considered in [6, 9, 17-19,22,23]. (Recall that I-convex and 2-convex
functions are monotone nondecreasing and convex, respectively.)

2. EXISTENCE AND BASIC CHARACTERIZATIONS OF A BEST ApPROXIMATION

In this section we obtain some properties of U,,-convex functions which
will be used in our analysis. We also extend some of the main results of [5 ]
regarding the dual cone, and the existence and characterization of a best
approximation to our framework as a starting point of this article.
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First, we present alternative definitions of VII-convex functions which
will be used in the sequel. If V" = {U i } ;'~(:, as in (1.1), is a canonical
ECT-system of n functions on /, then there exists a function Un so that
V" + 1= {u,} ;'~o forms a canonical ECT-system of n + I functions on / [15,
Theorem 9.4]. For our purpose, we choose \1'n = I and let

For a < X o < X I < ... < x" < b, we define the nth order divided difference
with respect to V,,+ I by [xo, x\, ... , x,Jf= det(v'(.';));:j=o/det(ui(x));:j~(l'

where Vi=U i for O~i~n-I and v,,=f [15, p. 368]. Since V"+1 is an
ECT-system, det(ui(x));:J~o in the denominator of the right hand side of
the above expression is strictly positive. Hence, k is VII-convex if and only
if, for any n+ I points xo<x, < ... <x" in I,

(2.1 )

Furthermore, expanding the determinant (1.2) as in [ 14, p. 250, Theorem E J,
we may show the following: k is VII-convex if and only if, whenever
x\ < X 2 < '" < x" are n points in I and hE VII satisfies h(x i ) =g(x i ),

I ~ i ~ n, then

( - I)" + i I (k(t) - h(t) ) ? 0, t E (x i. I' Xi)' I ~ i ~ n + I, (2.2 )

where xo=a and X,,+I =b. See also [9, Sect. IJ for other definitions
similar to (2.2). We observe that the interpolating function h appearing in
the above definition is unique since det(ui(xi));:j~O #0.

We now introduce some notation and terminology. The Green's function
associated with V" is defined by

Gil .\(x, t) = wo(x) rw(t 1 )

t

t ~x <b,

=0, a<x< t.

For n= I, Go(x, t)=wo(x) for t~x<b and zero elsewhere. We construct
a B-spline by

(2.3 )

A proof as in [15, Lemma 4.24] shows Bo.,,(t»O if tE(XO'X ll ) and
Bo.nit) = 0, otherwise. It follows that Gn J(x, t) is a VII-convex function of
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x for each t. Let f be a continuous function on l. Following [9], we say
that f has r alternating local extrema if there exist points XI < X 2 < .. , < x,
in I such that exactly one of the following two conditions hold: (i) Points
X; with odd (resp. even) indices are local maxima (resp. minima) with
(-I)if(x i _d>(-l)if(x;) for 2~i~r. (ii) Points Xi with odd (resp.
even) indices are local minima (resp. maxima) with (-l)if(x,_,)<

( _l)i fix;) for 2 ~ i ~ r. A constant function has zero alternating local
extrema. Iff has r local extrema at {x,} ~ ~]> then f is monotone (i.e., non­
decreasing or nonincreasing) on each (x; _ I , Xi)' 1 ~ i ~ r + I, where x 0 = a

andx'+l=b.

LEMMA 2.1. Let v E V"' n ~ 2. Then vlwo has at most n - 2 alternating
local extrema in I.

Proof The derivatives (u)wol' of u;/a'o, I ~i~n-l, span an ECT­
space V" -1 of dimension n - 1. If v E V" then (v/w o)' E V" _ 1 and hence,
(vIIVa)' has at most n - 2 zeros. A subset of these zeros clearly forms the
alternating local extrema of v/wo· I

Letting K" = {klwo: k E K,,}, U" = {u;/wo}7:d, and dividing both sides of
(2.2) by wa(t), we conclude that functions in K" are U,,-convex on I. By
Lemma 2.1, therefore, all the results of [9] hold for K", since the existence
of alternating local extrema is a condition in that article. The next proposi­
tion gives four properties of U,,-convex functions, the first property for
n-convex functions is also observed in [22, p. 236].

PROPOSITION 2.2. Let k be a U,,-convex function, n ~ 1.

(1 ) There exist an integer r, I ~ r ~ n, and points {Xi} with a =
Xo< Xl < ... < x, = b such that the following holds: If r = n, then
( -1)" + i klwo is nondecreasing on (Xi-I' Xi) for all 1~ i ~ n. If r < n, then
( -1)' +, kjv-'a (or equivalently ( _l)i k/wa) is nondecreasing on (x; _ I' Xi) for
all i or nonincreasing on (Xi _ 1 , Xi) for all i. The integer r and points {Xi}
depend upon k. Hence, k has at most n sign-changes in I.

(2) k( a +) and k( b -) exist and are possibly infinite. If Ik( a + )I= oc
(resp. Ik(b-)1 = oc), then (-1)" k(a+) = oc (resp. k(b-) = CfJ).

(3) Let [c, d] c I, then k is bounded on [c, d] and - oc <
I f~- I k( c) ~ 1;;_1 kid) < oc.

(4) If a < X a< Xl < .. , < x" < b, then [xa, Xl' ... , x,,]k = 0 if and only
if k E V" on (xo, x,,).

Proof (1) If n = 1, then k/wo is nondecreasing and hence the state­
ments hold with r = n = I. For n:;:: 2, by Lemma 2.1, this is a restatement
of [9, Theorem 2.1 (b)] as applied to K".

6~O so ).\0
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(2) By (I), k/wo is monotone (nonincreasing or nondecreasing) on
some interval (a, y) where y E I. Therefore k( a + )/wo(a +) and hence, k( a +)
exists and is possibly infinite. If x, and h are as in the definition (2.2) of k,
then (-I)"k~(-l)"h on (a,xd. But since Ihl<o::: on I, ifk(a+)=o:::,
then we must have ( - I )" k(a + ) = w. The proof for point b is similar.

(3) If n=l, then -w <k(C)/H'O(c)';;;k(t)/wo(t)';;;k(d)/wo(d) < 0:::,

t E [c, d], and since Wo is continuous we conclude that k is bounded
on [c, d]. For n ~ 2, the boundedness of k on [c, d] follows from the
continuity of k on [c, dl To prove the remaining statement, let 0 < f: <
min {c - a, h - d}. Then, by [7, Chap XI, Theorem 2.3], there exists a
U,,-convex function k(t, c:) such that - 0::: < 1,7 I k( a, f:) and k( 1, c:) = k(t) for
all tE (a + f:, h -1:). Then -0::: < 1,7- J(a, f:)';;; 1,7- Ik(c, 1:) = I: Ik(c). By a
symmetric argument, we have I" lk(d) < 0:::.

(4) Let n=l. Then [xo,x1]k=O if and only if k(xo)/wo(xo) =
k(xd/u·o(xi!. This is equivalent to k = AH'o for some real A. since k/wo is
nondecreasing. Now suppose that n ~ 2 and let J = (xo, x,,). We assert that
for some tJ E V" and for all X o~ x ~ x"'

k(.'(j = v(x) +f G" - dx, 1) df.1.k.,,(t)·
.I

(2.4 )

By (3), f,7_ 1k(xo » -0:::. Hence, by [7, Chap. XI, Lemma 2.2(b)] with
a = X o and b = X,,, we conclude that (2.4) holds for all X o < X < x". Now the
set of functions {G" _dx, t): t E J} is equicontinuous in the variable x.
Also, k and v are continuous. Thus, (2.4) holds at X o and X n proving our
assertion. Now by applying the linear functional of divided difference
to (2.4) and using (2.3), we obtain [xo,x j , ...,x,,]k=LBo.,,(l)df.1.k.,,(t),

since [XO,x1, ...,x,,]v=0. If [xo,x1, ... ,x,,]k=0, then LBo.,,(t)df.1.k.,,(t)
=0. However, Bo.,,(t»O for all tEJ. Hence, f.1.k.,,(J) =0, and, by (2.4),
we have k = v on [xo, x"l Conversely, if k = v, then, clearly,
[xo,x1, ..·,x,,]k=O. I

For A c Lp, we denote by cc(A) and ccp(A), respectively, the smallest
convex cone and the smallest Lp-closed convex cone containing A. Clearly,
cCp(A) is the Lp-closure of cc(A). If KeLp is closed convex cone, then a
proper subset M of K is called a generating basis for K if K = ccp( M).
The following set of functions M n( 5) of variable x will be shown to
generate K".p(S) if S is closed: M,,(S)={±lli(X):O~i~n-l}u

{Gn _ I(X, t): t E S}. In the rest of this section, we state five theorems. Their
proofs are similar to those of [5, Theorems 3.2, 3.5, 4.1, 4.3, and 4.5] and
hence are omitted.
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Let H denote the set of all extended real-valued functions on I. For
Pc H we define P to be the set of all functions f in H such that 1;. -> f
pointwise on I for some sequence {/;} in P. Such sets have found
applications in pr~ving the existence of a best approximation [9, 22].
The definition of P given here is as in [9] but weaker than the one in
[22]; however, it will be seen that all the results of [22] hold with this
change.

THEOREM 2.4. Let I ~ p <x and n;:' I. The follo»'ing six statements are
equivalent.

( I ) S is closed in I (i.e., in the relativized topology for I.

(2) If {k i} is a sequence in K,,( S), such that kj converges pointwise to
a real function' k on I, then k E K,,( S).

(3) K".p(S)=Kn(S)nL,,=K,,(S)nLp ' (This implies that K".I'(S),
I <p <x, is a Tchebycheff set.)

(4) Kll.p(S) is proximinal in L p .

(5) K".,,(S) is closed in L p •

(6) KlljS) = cC,,(M,,(S)).

For hELl, we let hlO](x)=h(x), and h[i]=J>l'i_I(t)h[i-I](t)dt,
1~ i ~ n. Recall that the dual cone is defined by (1.3). The following
theorem gives a characterization (K".,,(S))o, the dual cone of K".I'(S),

THEOREM 2.5. For n;:' I, I ~p <x, and all ScI,

KO (S) = (M (S))o
II,p < If

={hELq:h[i](b)=O, I~i~n, (-I)"h[ll](t)~O, tES},

where I/p + l/q = l.

The next two theorems give characterizations of a best L,,-approxima­
tion to fELl' from K".I'( S), for 1 < p < eN and p = 1, respectively.
For I <p < eN, uniform convexity of Lp ensures uniqueness of a best
approximation.

THEOREM 2.6. Let I<p<x, n;:'l, fEL"\K,,.p(S), gEK".plSj, and
e = If - gl p I sgn(j - g). Define

(2.5)
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Then, g is the best L,,-approximation to f from K".I'( S) if and only if the
follOlving three statements hold

(I) eliJ(b)=O, I,,;;i,,;;n.

(2) (-I)" el"J(t),,;; 0, tE S.

(3) g is a generalized polynomial of degree at most n - I on each
component of the open set E-, or Jleg = O.

THEOREM 2.7. Let p= I, n~ I,fEL,\K".,(S), and gEK".,(S). Define

D(j - g) = { eEL, : e = sgn(j - g) a.e., where f - g ¥ o} . (2.6 )

Then, g is a best L,-approximation to f from K". ,(S) if and on(v if there
exists e E D( f - g), such that the statements (I ), (2), and (3) of Theorem 2.6
are satisfied, where E- is defined by (2.5) using this e.

3. TCHEBYCHEFF SPLINES WITH COUNTABLE KNOTS

In this section, we develop the new concept of Tchebycheff splines with
a countably infinite number of knots. In the next section we show that such
splines arise naturally in the characterization of a best approximation from
K"jS). To attain compatibility with later sections, we develop these
concepts on an arbitrary interval J = (c, d) c I. If f is a function on I, we
denote its restriction to J by f I1. Similarly, if F is a set of functions on I,
then FI J denotes the set {f IJ: f E F}. Assume that Ii is a finite or countably
infinite family of disjoint open intervals such that

[c, d] = c1 ( YI} (3.1 )

where cl denotes the closure operation on the reals. Let n be the set
consisting of the endpoints of these intervals; 11: is called a partition of J. If
11: is finite then the endpoints c and d are in n; however, this may not be
the case if n is infinite (see Lemma 3.1 below). If 11: is infinite and for all
arbitrarily small e > 0, the interval (c + e, d - e) contains only a finite
number of points of 11:, then 11: is called a regular infinite partition of J. If
n is finite or infinite, we let T= T(J, n) = {k E e"-2(J): k E V"I Ii for all i}.
Clearly, T is a vector space. A function in T will be described as a
Tchebycheff spline (relative to U,,) of order n - 1 on J with simple knots at
the points of J n 11:. (Since J is open, its endpoints are not in J, although
they may be in n). If n is finite, then T is the space of ordinary Tchebycheff
splines much investigated in the literature [15]. If n is regular infinite, then
a k in T is a spline with a countable number of knots; furthermore, for any
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[; > 0, k is an ordinary spline on (c + F., d + [;) with a finite number of knots
at the points of(c+F.,d-e)nn:. We let

I ~p<~, (3.2)

where Lp(I) = Lpil is the usual LI'-space of functions on 1. We now define
a subspace T~( I, n:) which is of significance in our analysis. Let

F" = { u ;, °~ i ~ n - 1} \.) {G" _ I ( ., t): tEl n n: }. ( 3.3 )

and

T;,( I, n:) = d p ( span( F,,' 1)), (3.4 )

where ell' denotes the closure operation in Lp(I). Clearly, F" or F"II is a
linearly independent set; this follows immediately as in the case when n: is
finite [15]. It will be seen in Theorem 3.2 below that T;,( I, n:) is a dosed
subspace of TI'( I, n:). We remark that if n: is regular infinite, then T
(I, n:) is the pointwise closure of span(FIIII). To see this let kE T(I, n:)
and J' = (c + c, d - c) where e > O. Then, as was observed before, k II' is
an ordinary spline with a finite number of knots in I' n n:. Thus
k IJ' E span( F"I J') and the result follows. We now collect some properties
of n: in the following lemma. Its simple proof is left to the reader.

LEMMA 3.1. Let 1= (c, d) c I and n: be a partition of 1. If n: is finite then
c,dEn: and 71: has the form c=tO<t l < ... <tm=d with 1;=(t;_[,t;),
I ~ i ~ m. If n is infinite, then n is regular if and only if the set of accumula­
tion points of n is nonempty and is contained in {c, d}. Furthermore, c or d
is an accumulation point of 71: if and on~v if it is not a point of 71:. In this case
n has one of the follOlFing three possible forms.

(1) n: .. , <t_;< ... <to<t,< '" <t,< "', where c,drf:n; t_,lc,
t;id as i->~; and I;=(t;_I' til, -,~ <i<x.

(2) n::c=tO<t l < '" <t,< "', where CEn, d¢:n:; t,id as i->oc;
and 1j =(tj_l, til, I ~i<oc.

(3) n:· ., < t _, < ... < t _I < to = d, a case symmetric to the above.

Recall that V" = span{ u;: °~ i~n -l} and let X" = dp(span{ G,,_I(', t):
tEl n n}). The next theorem gives several properties of Tp(I, 71:) and
T~( I, n). For the proof of parts (1 )-( 3), we use the methods of [22].

THEOREM 3.2. Let 1= (c, d) c I and n be a finite or regular infinite
partition of 1. Let also I ~p < cr., and il'll p denote the norm in Lp(I). Then
the following holds.
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(I) Let (k m ) be a sequence of fimctions in TI'(J, n) such that
Ilk", IIp:S; D for al/ j and some D > O. Then there exists a subsequence (h m) ()!'

(k",) and hE Tp ( J, n) such that h", converges pointwise to h on J and
Ilhllp:s;D.

(2) Tp(l, n) is proximinal in LI'(J) and hence closed.

(3) T~( J, n) is a closed subspace of Tp ( J, n) and proximinal in LI'( J).

(4) T~( J, n) = V" IJ + X" IJ.

Proof If n is finite then the theorem holds by the theory of ordinary
splines [15] and T~(J, n) = Tp(J, n). Hence we prove the results when n is
regular infinite.

( I) Since n is regular infinite, [c, d] = cI( U;'~ I Ii) for some disjoint
open intervals I, c J. Since k", III is a generalized polynomial, i.e., is in V" III,
we have km=L.7~-d cm.iu, on cI(lI)' for some numbers ('m.,' Now (Ilk", III')
is a bounded sequence and, by Lemma 2.1, each km/wo has at most n-2
alternating local extrema in I I and thus satisfies condition (2) of [22, p.
224]. By [22, Lemma 2.2], there exists some interval [u, v] c I I and M> 0
such that Ik ",(t) I :s; M for all t E [u, v] and all m. (In fact, take [u, v] to be
one of [u" v;] in [22, Lemma 2.2].) Let x), O:S;j:S; n - I, be n distinct
point in (u, v). Then, Ik".(x))1 :S;M, O:S;j:s;n-l, for all m. Since
det(u,(x;l);~j~o#O, the n values km(x), O:S;j:S;n-l, uniquely determine
the coefficients cm ." O:s; i:S; n - 1, in the expression for k m' It follows that
ICm. ,I :s; N for some N> 0, for all m and i. Hence, there exists a subsequence
m l of integers and numbers c, such that (''''''' -+ c, for O:s; i:S; 11 - I. Denote
the subsequence (k m ) of (k m ) by 11.) and define h=L:~~ol c,u, on c!(II)'
Then, fl.) -+ h pointwise on cl( II)' Since em}. i converge, we conclude that
the ith derivatives 1\',>4 k U1 pointwise on cI(l d for 1 :s; i:S; n - 2. (At the
endpoints of II' we consider the one-sided derivatives.) Again, by the same
argument applied to the interval 12, we conclude that a subsequence (fl.)
of (j~.)) converges pointwise on cI(l2) to a polynomial, say h, defined on
cI(l2)' Also, fii

•
l
i -> hi/), I :s; i:S; n - 2, pointwise on cIUz ). If I, and Iz have

a common endpoint x, then clearly h is uniquely defined at x; also, hl')(x),

1 :s; i:S; 11 - 2, exist. Thus, 12.) and its first n - 2 derivatives respectively
converge pointwise to h and its corresponding derivatives on cI(l1 U IJ.
Applying this argument to each interval I"" we obtain a subsequence (im.)
of (km) and a function h defined on el( U;: I I;) which have properties as
above. Then the diagonal sequence (h m = 1m. m) converges pointwise on J to
h with h~~), I :s; i:S; n - 2, also converging to hUI. Clearly, hE T(l, n).

We show that Ilhllp:S; D. Let Xm denote the indicator function of U7~ I I,.
Then Ilh)Xm III':S; Ilh) III':S; D. Since h) and h are polynomials on each Ii and
h) -+ h on I" we conclude that IlhXm III':S; D. By the monotone convergence
theorem IlhXm III' i Ilhlll' and, hence, Ilhlll':S; D.



CONSTRAINED Lp-APPROXIMATION 433

(2) Let fELp(J) and kmETp(J,n) with Ilf-kmllp->LI=
inf{llf-hllp:hETp(J,n)}. Then, Ilkmll p is a bounded sequence and,
hence by (1), there exists a subsequence (h m) of (k",) and hE Tp(J, n)
with the properties stated there. Since by Fatou's Lemma, Ilf - hll p~
liminfllf-hmllp=LI, we conclude that IIf-hllp=LI and Tp(J,n) is
proximinal. Finally, proximinality implies c1osedness.

(3) Since FnIJcTp(J,n) and, by (2), Tp(J,n) is closed in Lin we
conclude that T~(J, n) c Tp(J, n). Now proximinality of T~(J, n) follows as
in (2).

(4) Clearly T~ = T~(J, n) ::> VnIJ and T~ ::> X" IJ. Hence T~ ::>

V" IJ + X" IJ. Now V" IJ is finite dimensional and X" IJ is closed in Lp(1).
Hence by [8, p. 68, Problem 0], we have that V" IJ + X" IJ is closed. Since
F" IJ c V" 11+ X"I 1, we conclude that T~ c V" 11 + XnIJ· I

4. ALTERNATIVE CHARACTERIZATIONS OF A BEST ApPROXIMATION

In this section we obtain characterizations of a best approximation from
K n . p ( S) in terms of TchebychefT splines with countable knots defined in the
last section. These characterizations are new and are different from those of
Section 2, and will be used in subsequent sections.

Using the characterization Theorems 2.6 and 2.7 of Section 2 as a
starting point, we introduce some notation which will be used in the rest
of this paper. Let f E Lp\K".p( S) and g E Kn • p(S). If I < p < 00, then define
e = If - glP-l sgn(j - g) as in Theorem 2.6. If p = 1, let D(j - g) as in
(2.6) and e E D(j - g). For all 1~p < ex, define E- by (2.5) and let

E+ = {tE/: ( - 1)" e["](t) > o}, (4.1 )

A = {XE/: e[n](t) "",,,0, for tE(x-b, x) u (x, x+ b)) n S for some b >O},

(4.2)

B = {x E /: e["](t) "",,,0, for t E (x -b, x) u (x, x + b) for some b > O}, (4.3)

and Bo = {t E B: e["]( t) = O}. An open interval (c, d) is called a component
of an open set G if (c, d) c G and c, d rj: G. We leave the simple proof of the
next lemma to the reader.

LEMMA 4.1. ( I ) A and B are open sets.

(2) If 1 = (c, d) c / and 1 n S contains only a finite number of ::.eros
(possibly none) of e["J, then J is contained in some component of A.

(3) Be A, and hence a component of B is contained in some
component of A.
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(4) Let J = (c, d) be a component of' A (re<\p. B) and Z be the set II(
::eros of ern] in J n S (re.\p. J). Assume Z is infinite. Then the set of
accumulation points of Z is nonempt.y and is contained in {c, d}. Further­
more, Z is countable.

(5) B o is a countable set, E uE+uBo=B, and el(E uE+)=
cl( E -) U cl(E+) = el( B).

The next proposition foHows immediately from Lemma 3.1 and 4.1 (4).

PROPOSITION 4.2. Let I ~p < 00, n';3 I, f E LI'\K".)S), and g be a best
Ll'-approximation to f from Kn.I'(S), If J = (c, d) is any component of A or
B, then there exists a finite or regular infinite partition 7r. = 7r.J of' J having one
of the forms described in Lemma 3.1 such that the points of J n 7r. are the
::eros of ern] in J n S.

We now define Un-convex functions on an interval J = (c, d) c: I. Let
Un = {U i} ;'::dgiven by ( 1.1 ) be an ECT-system. A real valued function k on
J is said to be Un-convex (on J) if (1.2) holds for any n + I points
Xo < Xl < ... < X n in J. Alternative definitions are obtained by replacing the
interval I in definitions (2.1) and (2.2) by J. Given Wi' O~i~n-l, as in
Section 1, we may define functions ai' 0 ~ i ~ n - 1, by (1.1) with a and b
there replaced by c and d, respectively. Then Vn={tlJ~::d is an ECT­
system on 1. If V" = span VII' then Vn is precisely aH functions in Vn restricted
to J, i.e., Vn = VII IJ. It may be easily verified that k on J is Un-convex if
and only if it is Vn-convex (i.e., (1.2) holds with u, replaced there by a,).
It is easy to see that if k defined on I is [ill-convex on I, then it is
Un-convex on J. However, if k defined on J is Un-convex on J, then there
may not exist a UII-convex function on I whose restriction to J equals k.
This situation arises if k(x) -> ± x as xl c or xi d. We denote the set of
all Un-convex functions on J by Kn(J). As before we may defined K,,(J, S)
as follows. For k E Kn(J), let flk.n denote the Lebesgue-Stieltjes measure
generated by 1,7_ik on J. Then Kn(J,S)={kEKn(J):j1k.n(J\S)=0}. We
let Kn.p(J, S) = Kn(J, S) n LI'(J), I ~p <oc. Recall that TI'(J, n) and
T~(J, n) are defined by (3.2)-(3.4).

PROPOSITION 4.3. Let J = (c, d) c: I and 7r. be a finite or a regular infinite
partition of J. Then Tp(J, n) n Kn.)J, S) c: T;,(J, n), 1~p < x, n';3 1.

Proof (See [5, Proof of Lemmas 2.3 and 2.4]). Let k E T,,( J, n) n
Kn.p(J,S) and p(t)=/,7_lk(t), where 1:_ 1 is defined by (104). Then, p is
right continuous and nondecreasing [7]. Let 0 < <5 < (d - c )/2 and for
O<e<<5, define as in [7, p. 391], p(t,e)=p(c+e), tE(c,c+e), =p(t),
tE[c+e,d-e), and =p(d-e), tE[d-e,d). Also define k(t,e), tEJ, by
k(t,e)=LnsGn_i(l,x)dp(x, e) + '2:7::d ai(e)u,(t), n';32, and =p(t,e),



CONSTRAINED L ,,-APPROXIMATION 435

n = 1, where numbers ai(c:) are chosen so that k(·, l:) = k on (c + D, d - E:).
Let tlk. II and I' be the Lebesgue-Stieltjes measure generated by p and
p( ., t:}, respectively, on J. Clearly, /i k . II = Ii on (e + t:, d - E:]. Since p( ., t:) is
constant on each of (e, e + l;] and (d - E:, d), we have that 1'( J\( c + E:, d - E:])

=0. Hence, LnsGII-l(t,x)dp(x,E:)=L+,.d_l:]nSGII l(t,x)dp(x). If
[c, d] = cl( Ui Ii) as in (3.1), then since k E T/,( J, n), we conclude that
k Iii E VIII Ii' i.e., it is generalized polynomial for all i. Hence p is constant
on each Ii and tlk.,,(J\n)=/lk.,JUJ,)=O. Again, by the regularity of
n,n'=(c+D,d-E:]nSnn is finite. Hence LnsGII j(t,x)dp(x,D)=
'L.\En,GII dt,X),uk.II{X}, It follows that k(.,l:)Espan(FIIIJ) for alll:>O.
By [5, Lemma 2.4] as applied to L,,(1), we conclude that k(·, l:) -. k in
Lp(J) as c: -. O. Hence k E cl,,(span(FIII J)) = T;,(J, n). I

LEMMA 4.4. Let I ,,;;p< ex, n~ 1, fEL,,\KII.,,(S), and g be a best
L,,-approximation to f from KII.,,(S). If' J = (e, d) c I and e1i](e) = e1i](d)

= 0, I,,;; i";; n, then g IJ is a best L,,( J)-approxif1lation to f IJ .fi'Of1l
KII./,(l,S).

Proof We prove the result for 1 <p < x, the proof for p = I is similar.
Let j = f IJ and i = g I1. If ex corresponds to e when approximating / by
functions in K". ,,( J, 5), then ·cx = 1/- i!" - I sgn(.f - g) = e on l. Define
CX;i](t) = t H'i_ 1(.1') X;i-I](S) ds, tEJ, where x;O] = ex.

We show that the three conditions of Theorem 2.6 hold forx. We first
assert that

(4.4)

Clearly, x;O]=x=e=e[O]. Hence by integration, ex;1](t)=e l1 ](t)­

e[I](c)=e(I](t), since e[I](c)=O. Now e[I](e)=O, I";;i,,;;n, hence,
repeating this process successively or by induction we conclude that (4.4)
holds. Also

{t E J: ( -I )" X;II](t) < O} = J n E-. (4.5)

Since g is the best approximation to f from K"jS), the three conditions
of Theorem 2.6 hold for e. Now by (4.4), (4.5), and the hypothesis, we find
that x;i](d)=O, I,,;;i";;n, (-I)"x;II](t),,;;O for tEJnS and gil is a
generalized polynomial on each component of the open set J n E-. Hence,
by Theorem 2.6, the required conclusion follows. I

LEMMA 4.5. Let x E I and (x) be a sequence in 1\ {x} such that Xi -. x.
Suppose that n ~ land hELl sati,lfies h(II](.\) = 0 for all j. Then h[i](x) = 0,
I ,,;;i";;n. Furthermore, (fh[l] is differentiable at x then lI(x)=O.

Pro(~r Clearly, h["](x) = 0 by the continuity of h(II]. Suppose that
n ~ 2. By successive applications of Rolle's theorem we conclude that,
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for each I ~ i ~ n - I, there exists a sequence (xji) c 1\{x} such that
M']( x;tI) = 0 and xjtl -> x as j -> '£. To prove the required result by
induction assume that h[I](x)=O for some 2~i~n. Then (hli](xjO)­

h[iJ(x))/(xy'-x)=O for all }. Letting j->oc we conclude that
Wi_I(X)h[1 IJ(X)=O or h[IIJ(X)=O. The last statement of the lemma
follows as above. I

We now state and prove our main characterization theorem. The
following notation will be useful in computations. Analogous to 1,;_ 1 and
III _ 1 (see 1.4)), for a VII-convex function k define the differential operators

I 1 I 1 (k)
Ik=-D-D-~···-D -

I w, Wi 1 Wi 2 WI \1'0'
o~ i ~ n - 2, n ~ 2, (4.6)

where D denotes the derivative of a function as in Section I and 10 k =
k/wo. Clearly D(li_1k)=wi(l;k). Recall that if l<p<oc, then the best
approximations under consideration are unique.

THEOREM 4.6. Let I <p < ''£, n ~ l,fE L,,\KII.p(S), and gE KII.p(S). Let
e = If - gil' - 1 sgn(f - g), and the sets A and B be defined by (4.2) and (4.3).
Then the .f(illowing five statements are equivalent.

(1) g is the best [,,-approximation to Ifi-om K II.,,( 5).

(2) g = f a.e. on I\A, and, on each component J of A, g IJ is the best
L,,( J)-approximation to f IJ jrom K II .,,( J, 5).

(3) Reiterate the above statement with A rep/aced by B.

(4) g = f a.e. on I\A, and, on each component J of A, g IJ is the best
L,,( J)-approximation to I IJ from each of K II.,,( J, S) and T~(J, n), where
Tl = Tl.l denotes the finite or regular infinite partition of J formed by the zeros
of e[IIJ in J n 5 (see Proposition 4.2).

(5) Reiterate the above statement with A rep/aced by B.

Proof We prove the results for A, i.e., the equivalence of (I), (2), and
(4). The proof of the equivalence of ( 1), (3), and (5), the results for B, is
similar. However, since Be A (Lemma 4.1 (3)), some results for B follow
immediately from those of A.

We show that (I) implies (4). Let g be the best approximation to f Let
x E I\A. It follows directly from the definition of A that there exists a
sequence (x;) c I\{x} such that x j -> x and e[II](x) = 0 for all}. By Lemma
4.5 with h = e it follows that e[i](x) = 0 for 1~ i ~ n, and e(x) = 0 if ell] is
differentiable at x. Now since e[ I] is differentiable a.e. on I, we conclude
that e = 0 a.e. on I\A. This gives g = f a.e. on I\A.
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Let J=(c,d) be a component of A. Since c,dE/\A, as shown above
we have e[i]( c) = e[i](d) = 0, 1:( i:( n. By Lemma 4.4, g If is the best
approximation to IIJ from K n.I'(J, S).

It now remains to show that g = g IJ is the best approximation to
/=/If from T;,(f,n). To this end, we first show that J1 g .n(E-)=O. By
Theorem 2.6, g is a generalized polynomial of degree n - I on each compo­
nent (x, y) of E-. Hence, by the definition of f.1 g.,,, we have f.1.p (x, y) =
(/,,-_lg)(Y)-(/:_lg)(X)=O. Now E- is the union ofa countable number
of its components. Hence, f.1 g,n( E-) = O. Since g E C 1n

- 2)(1), and [c, d] =
cl(Ui Ii) as in (3.1), to establish gE T(f, n), it suffices to show that g is a
generalized polynomial of degree n - I on each Ii = (c i , d i ), say. By
Theorem 2.6, we have ( -I )" ern] :( 0 on S. Since I, () S contains no zeros
of ern], we conclude that (-I)"e[n]<o on Ii()S. It follows that
I, () SeE. Since f.1p( E - ) = °as shown above, we have J1 g. nU, () S) = 0.
Again, since f.1 gjS') = 0, we have f.1g.,,(/;) = 0, i.e., (l,~ I g)(c;) = (l,~ _1 g(di )·

It follows that g is a generalized polynomial of degree n - 1 on Ii' Thus
gE T(J, n), and since gEL" we find gE T,,(J, n). Again since gEK".I'(J, S),
by Proposition 4.3, we conclude that g E T~( f, n). ,

We now show that g is the best approximation to I from T~(J, n) or
equivalently, Loch = °for all h E T~(J, n), where oc = 1/- g!l'-l sgn(j- g)
on J (see the proof of Lemma 4.4). Now oc = e on J, T~( f, n) =
cll'( span( F" IJ)), and x*( h) = L:xh = L eh for hE LI'( f) is a continuous
linear functional on L,,( f). Hence g is the best approximation to / if and
only if e satisfies

and

f eUi= 0,
J

O:(i:(n-l, (4.7)

t E f () n. (4.8)

We show that (4.7) and (4.8) hold by using the fact that e[iJ(c)=

eUl(d) = 0, I :( i:( n, which is established above, and e[n l ( t) = °for t EJ () n
which follows from Proposition 4.2. Integration by parts yields

where Ii are defined by (4.6). Since liu,= 1, successive integration by
parts gives for O:(i:(n-I, (-lrLeu i =Le[i]I\'j(lju i )=Le[ jl l1'j=
(e[l+ 'l(d) - e[i+ I l(c)) = 0. Similarly, since 1"-1 Gn _ I (·, t) = 1 on [t, d) and
0, elsewhere, we have
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( . tl=f (,[" I]\_l' I G ( t)I , " I" 1 ,,-, "
J

=J e["-I]w,, ,=(el"J(d)-e["](t))=O.
[I. d)

We have shown that (1) implies (4).
Clearly, (4) implies (2). We show that (2) implies (I). Let kEK".I'(S)

and ] be any component of A. Then g I] is the best approximation to
II] from K".,,(],S). Since kIJEK".,,(J,S), we have IIU-g)xJII,,~

iIU-k)XJII" or IIU-g);(JII:: ~ IIU-k)XJII::, where XI' denotes the
indicator function of the set F. Summing the latter inequality over all
(countable) components J of A we obtain Ii U - g) XA II:: ~ II U - k) X.I Ii::.
Since g = I a.e. in I\A, we conclude that IiI - gil" ~ iiI - k II". Hence g is
the best approximation to f from K".,,( S). I

The following analogue of the above theorem for p = I may be similarly
proved using Theorem 2.7. Since p = 1, a best approximation is not
necessarily unique.

THEOREM 4.7. Let p= I, n? 1, fELj\K".I(S), and gEK".l(S), Let
DU - g) be defined by (2.6). Then g is a best L I-approximation to f Fum
K", I (S) if and only i{ there exists e E D(f - g) satisf.i'ing the statements
(2HS) o{ Theorem 4.6 with "the best L)])-approximation," in those
statements replaced b.v "a best L1(J)-approximation," p replaced by I, and
the sets A and B defIned by (4.2) and (4.3) /Ising this e.

Finally, we remark that in Theorem 4.6, another equivalent statement
(2') may be obtained from statement (2) by letting J = (c, d) in that state­
ment, where c < d are two endpoints of (possibly different) components of
A (and, in particular] may be a component of A). This may be justified
by Lemma 4.4. Similar changes may be made in the central part of state­
ment (4) pertaining to K".,,(J, 5), and statements (3) and (5). Similar
remarks apply to Theorem 4.7.

5. PROPERTIES OF BEST ApPROXIMATIONS

Throughout this section unless otherwise stated, we assume that
1~p<x, n? 1, fEL"\K,,.I'(S), and g is a best L,,-approximation to f
from K"j 5). We investigate the structure and properties of g, and also its
uniqueness in L I . We use the notation of the last section; in particular, e,
elil , and E- have the meanings given there.

A real function k on I is said to be strictly UJ/-convex on ] = (c, d) c I
if [xo,x" ... ,x,Jk>O for all C<.\'o<X,<"· <x,,<d. The following
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lemma is an extension of [17, Lemma 3.2(ii)] and may be proved similarly.
A similar result for convex functions has appeared in [21].

LEMMA 5.1. Let k E K,,( S) and J = (c, d) c I. Assume that k is not strictly
Un-coIH'ex on any subinterval of J. Then there exists an infinite (not
necessarily regular) partition 7r. of J such that k IJ E T(J, 7r.).

PROPOSITION 5.2. Let J = (c, d) c I.

(11 II" g is strictly VII-convex on J, then g = f a.e. on J.

(2) If g =I f a.e. on J, then g E T( J, TC) for some infinite (not necessarily
regular) partition 7r. of J.

Proof (I) By Theorems 2.6 and 2.7, g is a generalized polynomial on
each component of E . Hence we have J n E- = 0 and, consequently,
(-lj"e[I]~O on 1. If. for some XEJ, we have (-lj"e[I](xj>O, then
there exists an open interval J' = (u, v) c J such that ( - 1)" e[lI] > 0 on J'.
Then, by Theorems 2.6 and 2.7, we have J' c S' = I\S. Since fl g • III S') = 0,
o= fl g . III J' )= I,~ 1( v) - 1,7_ I(u). Hence, g is a generalized polynomial on JI,
which is a contradiction. It follows that e[lI] = °on J, and hence, e =0 a.e.
on 1. This gives f = g a.e. on J.

(2) It follows that g =I f a.e. on any subinterval of J and hence, by
( I), g is not strictly UII-convex on any subinterval on 1. Now the result
follows from Lemma 5.1. I

A point t E S is called a two-sided limit point of S if there exist sequences
(s",1 and (tmJ in Swith sm<t<tm such that sm-+t and t",-+t. Let ScS
denote all the two-sided limit points of S. If h is a function on I and J c I
then we let Z./(h) = {t E J: h(l) = O}.

LEMMA 5.3. Let n ~ 2 and J = (c, d) c I. Then Z./(e[II]) Ii S c
Z./(e[" I]).

Proof Let tEZ./(e[II])nS. Then there exist sequences (s",) and (I",) in
S with s'" < t < tm such that s'" -+ t and tm -+ t. By Theorems 2.6 and 2.7
we have (-1)" e[n] ~° on S; in particular, (-1)" e[II](s",) ~ O. Since
tEZ./(e[II]) we have e[II](t) =0, and hence, (-I)"(e["](tl-e["]('\·m))!
(t - s",) ~ O. Letting Ill ..... oc we obtain (- I)" e[n . 1]( t) ~ 0. Similarly,
using the sequence (1m) we obtain (-I)"elll-l](t)~O, which gives
e[1I1](t)=O. I

THEOREM 5.4. Let J = (c, d) c 1. In each of the following cases, the
.\plines are the ordinary Tchebycheff splines (i.e., with a finite number o{
knots) (?{ degree n - 1, and the knots are the zeros f?f e lll ] in J Ii s. (LxJ
denotes the largest integer 110 larger than x.)
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(1) Iff> g a.e. on J or f < g a.e. on J then g IJ is a spline with at most
n knots in 1.

(2) Assume that Zj(e[II]) c S. Then the follmving holds.

(i) Iff> g a.e. on J, then g IJ is a spline with at most Un - I )j2j
knots in J.

(ii) IfI < g a.e. on J, then g IJ is a spline with at most Lnj2 j knots
in J.

If Jc S, then Zj(e[II]) c S and (i) and (ii) above hold.

Proof We provide proofs for I < p < (X); the case p = 1 may be similarly
argued.

(1) We prove the result for the case .r> g a.e. on J; the proof for the
other case is similar. Since f> g a.e. on J we have woe> 0 a.e. on J. This
implies that e[l] is strictly increasing on J. Consequently, e[l] has at most
one zero in 1. Hence, its indefinite integral e[2] has at most two zeros in
J. Applying this argument in succession or by induction, we conclude that
e[ll] has at most n zeros in J and consequently, in J n S. By Lemma 4.1(2),
J is contained in some component Jf of A. By Theorem 4.6(4), gil' E

T~( 1', n), where n is the partition of Jf such that points of l' n n are the
zeros of e[II] in l' n S as in Proposition 4.2. Since J n S c Jf n Sand
contains at most n zeros of e[II], g IJ is a spline with at most n knots.

(2) First consider the case n = I. Note that, by Theorems 2.6 and 2.7,
e[ 1] ~ 0 on S. Iff> g a.e. on J, then as in ( I ), e[ I] is strictly increasing on
J. Hence, if for some tE J, e[ll](t) = 0, then e[ I] < 0 on (c, t). Since ell] ~ 0
on S, there does not exist a sequence (s",) c S with s", < t and Sill -> t. This
is a contradiction to the hypothesis that t E S. Hence, e[ 1] of. 0 on J and e[ I]

has no zeros in J n S. Iff < g a.e. on J, then as above, we may show that
e[ I] has no zeros in J n S. Now using Lemma 4.1 (2) and Theorem 4.6( 4 l,
and arguing as in (I) we conclude that g IJ is a spline with no knots. This
proves (i) and (ii) for n = 1.

Now consider the case n ~ 2. If f> g a.e. on J, then, as in (I), the
number of zeros of e[ll] and e[II - I] in J cannot exceed nand n - I,
respectively. Let r be the number of zeros of ern] in J. By Rolle's theorem,
there is a zero of e[n" I] strictly between each pair of adjacent zeros of e[ll];
hence there are r - I such zeros in J. Again since Zj(e[II]) c S, by Lemma
5.3, we have Z.l(e[ll])cZAe[II-I]). Consequently, e[II I] has 2r-1 zeros
in J. Now since 2r - I ~ n - 1, we conclude that r ~ Lnj2j. If.r < g a.e. on
J, then by an identical method, we may show that r ~ Lnj2j, where r is as
above. Hence, the number of zeros of ern] in J n S cannot exceed Lnj2j.
Now using Lemma 4.1 (2) and Theorem 4.6(4) and arguing as in (1), we
conclude that g IJ is as spline with at most Ln/2J knots. If n is odd then
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Ln/2J = L( n - 1)/2 j. Hence we have established (i) where n is odd and (ii)
for all n.

It remains to show (i) where n is even. Assume that n is even and el"J
has I' zeros in J. As shown above I' ~ n/2. Suppose now that I' = n/2.
For convenience denote the r zeros of el"J by::'" <::~ <::~ < ... < ::;: _. I'

As before, by Rolle's theorem and Lemma 5.3, e l" I J has 21' - 1 = n - 1
zeros in J denoted by::': 1 <::~ 1 < '" < ::;: - ~ , where ::;, ... I = ::;' ,

i = 1, 3, 5, ..., n - 1. Again, by Rolle's theorem, applied successively, we
conclude that e[/], 1~ j ~ n - 1, has j zeros ::( <::~ < ... <::f in J where
::;+1 <::;<:::::i, l~i~j. Let t,=::;, l~i~n-l, and t,,=::;; I' Then,
t l <t2<· .. <til-I = til and eli](ti) =0, O~i~n. Now f>g a.e. on J,
hence, woe>O a.e. on J. Since e[IJ(tl)=O we have e[IJ>O on (t"d). By
repeated applications of this argument, we have eLi] > 0 on (t

"
d), and in

particular, e["J>O on (t",d). Since n is even by Theorem 2.6, elllJ~O on
S. Hence there does not exists a sequence (.I'm) C S with t" < .I'm and su, -+ t".
This contradicts the fact that t Il EZ, (e[Il J)c$. Thus el"J has no more than
n/2 - I zeros in J, and, hence in J n S. Then arguing as before we conclude
that g IJ is a spline with no more than n/2 - 1 = L( n - 1}/2J knots. I

The following example shows that the bounds on the number of knots
in Theorem 5.4 cannot be improved in general. Let 1= S = (0, 4), n = p = 2,
and W O =w 1 =1. Letf(t)= -t+l, l<t~2, =t-3, 2<t~3, and =0
elsewhere. Then g, the best L 2-approximation to f by K2. 2(1), is given by
g(t)= -t/2+ 1/4, 0<t~2, and =t/2-7/4, 2<t<4. Clearly, f<g on
(3/2, 5/2) and g has one knot in this interval. Again, f> g on ( 1/2, 3/2) and
also on (5/2, 7/2), and g has no knots in each of these intervals. This
verifies (i) and (ii) of Theorem 5.4( 2).

We now investigate boundedness of a best approximation. We use the
differential operators I,~ 1 and Ii' 0 ~ i ~ n - 2, defined by (1.4) and (4.6),
respectively.

THEOREM 5.5. Let n ~ 2. If f is essentially bounded on a right neigh­
borhood of a and a left neighborhood of b, then g is continuous and bounded
on I, and can be extended to a continuous function on [a, b]. In particular,
these conelusions about g hold (If E L r or f is continuous and bounded on I.

Proof For convenience of notation we use the operator I". I to denote
I,~ 1 in this proof. By Proposition 2.2( 2), g(a +) exists. We need to show
that 19(a+)\ <Y.,. Assume to the contrary that Ig(a+)1 = oc; we show a
contradiction. Define gi=Wi(/ig), O~i~n-l, where go= wo(/og) =g.
Note that (l/wll _ 1 ) D +( l/w ll _2}D··· (l/w i+ 1) Dg)w[ = Ill. ,g, which is
nondecreasing since g is U,,-convex on I. It follows that gi is [I" _ i-convex
on I, where UIl _ j= {uJ~':/ [7, p. 386, Theorem 2.1]. Since g may be
obtained from g[ by a succession of integral operations, Ig( a + ) I =oc
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implies Ig, (a + ) I= 00 for 0 ~ i ~ n - I. By Proposition 2.2( 2), we conclude
that (_I)" 'gi(a+)=oo, O~i~n-1. Since \1'0 is continuous on [a,b]
and I is bounded in a neighborhood of a, there exists c E I such that
( - 1)"- i gi(C) > 0 or ( - 1)" i (l; g)(c) > 0 for 0 ~ i ~ n - I, and ( - 1)" g(c) >
(-I)" H'o(c)l/wo a.e. on (a, c).

Analogous to G" I(X, f), let for 0 ~ i ~ n - I,

H i(x,t)=wO(X)J'W I(t l )J'lt'2(t2)"'J' Il'i(t;)dt i ···dt2dtj, a<x<t,
y /1 (1

=0, f~x<h,

where Ho(x, t) = 11'0(X) for x < f and 0, otherwise; H o(', f) is thus right­
continuous. Now define

1/-1

h(x)= L (-l)i(l,g)(c)Hi(x,c},
;=0

a<x<c,
(5.1 )

=g(x), c~x<h.

Note that h is a generalized polynomial of degree n - 1 on (a, c). It is easy
to verify that (lih)( c) exists for 0 ~ i ~ n - 1 and equals (l; g)( c). Hence h is
U,,-convex on I. Now 1,,- I h equals the constant (/,,_ I g)( c) on (a, c] and
hence, it is continuous at c. (Recall that I" I h is right-continuous and non­
decreasing.) Let fl be the Lebesgue-Stieltjes measure generated by I"., I h.
Then fl( a, c] = 0, and hence fl( Sf n (a, c] ) = O. Again, since g E K"j S) and
g = h on (c, b), we conclude that Jl( Sf n (c, b)) = 0 giving Jl( Sf) = O. Thus
hEK".p(S).

Since (_I),,-i(lig)(C»O, l~i~n-I, we obtain by (5.1), (-l)"h~
(-I)"(log)(c)Ho(',c)=(-l)"g(C)II'o/WO(c) on (a,c). Hence (-l)"h~

(-1)"1 a.e. on (a, c). If p(t)=(I,,-lg)(t), it is known that g(x)=
( -1)" 5', H,,_I(X, t) dp(t) + L7~~ (_I)i (/,g)(c) Hi(x, c), a < x < c. (See,
e.g., [7, p. 388, Eq. (2.26)] with n there replaced by n -1; however, this
expression should be corrected for minor errors in the exponents of ( - I )
within the summation.) This gives

g(x) = (-I)"rH,,_I(X, t) dp(t) + h(x),
x

a<x<c. (5.2)

Now (- 1)" g( a +) = 00. Hence, by (5.2) we conclude that flg. ,,( a, c) > 0,
where flg, n is the Lebesgue-Stieltjes measure generated by p. Again since
Hn_1(·,t»0 on (a, c), we obtain (-l)"g>(-l)"h on (a,c). Thus
(_I)" g>(-l)"h~(-l)"I on (a, c), Hence, S~I/-hIP<S~I/-gIP.

Since h=g on [c, b], we conclude that III -hli p < III -g!l p and that g is
not a best approximation, a contradiction. Thus Ig(a+)1 < w. Similarly,
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using [7, p. 384, Eq. (2.9)J, we may show that Ig(b-)! < 00. Hence g is
bounded on I; its continuity follows from Un-convexity for n? 2. By letting
g( a) = g( a +) and g( b) = g( b -), we have the resulting continuous extension
to [a, b]. I

The following known result, which is needed for our next theorem,
follows immediately from [7, p. 410, Theorem 5.5].

LEMMA 5.6. Let 1~p<x" n?l, and fELp\Vn. If g is a best
Ll'-approximation to f from Vn, then e has at least n sign changes in 1.

THEOREM 5.7. Let f be Un-concave on 1. Then g E Vn, and hence, g is also
a best approximation to f from Vn. If P = 1 and f is continuous on [a, bJ,
then g is unique. (For 1 < p < C£, g is unique by the un!(orm convexity of
Ll")

Proof If f = g a.e., then g is both Un-convex and Un-concave; thus
g E V". Now suppose that f =f- g and hence, e =f- 0 on a set of positive
measure. It follows that e[n] =f- 0 on a set of positive measure. Clearly, g - f
is Un-convex on 1. By Proposition 2.2( 1), g - f and, hence, e has at most
n sign changes in 1. Since e[I](a)=e[l](b)=O, by Rolle's theorem, we find
that e[ 1] has at most (n + 2) - I separated zeros in [a, b]. (The endpoints
a and b, and possibly small intervals containing each endpoint constitute
two separated zeros.) Applying this argument in succession or by induc­
tion, we conclude that ern] has at most (n + 2) - n = 2 separated zeros in
[a, b].

Now let [a, cJ and [d, bJ be the largest intervals such that e[n](t) =°for
tE[a,cJu[d,b]. Since e[n](a)=e[n](b)=O and ern] is continuous, such
intervals exist. Again c < d since ern] =f- 0 on a set of positive measure. Let
J = (c, d). Then, by the above argument on zeros, e[n] has no separated
zeros in J and, hence, no ordinary zeros in J. Since ern] = 0 on
[a, cJ u [d, bJ, we see that J is a component of B. If n is the partition of
J as in Proposition 4.2, then n: c < d, and T~(J, n) = Vn IJ. By statement
(5) of Theorems 4.6 and 4.7, we find that g IJ is a best Ll'( J)-approximation
to f IJ from Vn IJ.

We show that a = c and b = d. This will establish that g E Vn and is a best
approximation to f from Vn . Suppose to the contrary that a < c. Since
ern] =0 on [a, cJ, we have e=O a.e. or equivalently,f -g=O a.e. on (a, c).
If n= 1, thenf -g is UI-concave. Hence (j -g)/II'o is nonincreasing and e
cannot have any sign changes in J. By Lemma 5.6 with n = 1 as applied to
J, we find that e has at least one sign change. This contradiction establishes
that a = c. Similarly, b = d in this case. Now suppose that n? 2. By Lemma
5.6, e and, hence, f - g has at least n sign changes in J. Since f - g = 0 a.e.
on (a, c), hi = wIldf - g) has n sign changes in J. However, -hI is
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Un ~ I-convex on J. This contradicts Proposition 2.2(1) that -hI has at
most n - I sign changes in 1. Thus a = c and similarly h = d.

If p = I and f is continuous on [a, h], then g is unique since Vn is a
TchebychetT space. I

Next, we obtain sufficient conditions to ensure that a best approximation
to f ELI from K n . 1(S) is unique. Recall that Theorem 2.4 ensures the
existence of a best approximation if S is closed in I.

THEOREM 5.8. Let n ~ 1 and f ELI \K". I(S). Assume that for all J =

(c, d) c I and for all finite or regular infinite partitions n of J, f IJ has a
unique best LI-approximation Fom TI(J, n). Then a hest LI-approximation
to f Fom K n . I(S), if it exists, is unique.

Proof Let g and h be two best approximation to f from K n . dS). We
show that g = h a.e. By statement (5) of Theorem 4.7 we find that there
exists e E D(f - g) such that g = f a.e. on I\B and on each component J of
B, g IJ is a best L I (J)-approximation to f IJ from T; (J, n), where n is the
finite or regular infinite partition of J formed by the zeros of ern] in J n S.
Then, the three statements of Theorem 2.7 hold and, in particular, we have
f,eg = O. Now hE K n. I (S) and, by a well known result (see, e.g., [4] or
[5]), we have e E (K". I(S) )0, the dual cone of K II • dS). Hence 1, eh ~ O.
Since Ilell", = 1, we have Ilf - gill = 1, e(f - g) = 1, ef ~ 1, e(f - h) ~
Ilf - hili' Since Ilf - gill = III - hill, equality holds throughout in the
above expression, showing that fI eh = a and fI e( f - II) = IIf - hili' Again
since llellz = 1, we conclude that e = sgn(f - h) a.e. on the set {t: I(t) ­

h( t) i:. o} , i.e., e E D( f - II) which is defined by (2.6). As observed above, the
first two statements of Theorem 2.7 hold for e, and fI eh = 0; thus, all three
statements hold for e and h. Now applying statement (5) of Theorem 4.7
for II and e, we conclude that h = I a.e. on I\B and, on each component J
of B, hi J is a best L I (J)-approximation to I IJ from T'l (J, n). By
hypothesis, g IJ = h IJ a.e. on each component J of B giving g = h a.e. on B.
Again, g = f = h a.e. on I\B, and hence, g = h a.e. on I. I

THEOREM 5.9. Let n ~ 1, I be continuous on [a, h] and g be a best
LI-approximation to I from K". I(S), Let e and B he as in statement (5) of
Theorem 4.7. Assume that I - g has a finite number ol sign changes in each
component of B or that S is finite. Then g is the unique best approximation
to f from K II • I (S). In particular, g is unique ifI - g has a finite number of
sign changes in I.

Proof Let J = (c, d) be a component of B. Exactly as in the proof of
Theorem 4.6, by applying Lemma 4.5, we may show that e[iJ(c) =
e[iJ(d) = 0, 1~ i ~ n. If m is the finite number of sign changes off - g in J,
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then, by Rolle's theorem, e[ I J has at most (m + 2) - 1 separated zeros in
[c, dl Applying this argument in succession, or by induction, we conclude
that e["] has at most (m+2)-n separated zeros in [c,dl Now, by
Lemma 4.1 (4), the set of zeros of e["l in J is countable. Hence e[" J cannot
be identically equal to zero on any nondegenerate subinterval of [c, dl
Therefore, e["] has at most m - n + 2 ordinary zeros in [c, d], and at most
m - n, i.e., a finite number of zeros in J. If n is the partition of J formed
by the zeros of e["] in J n S as in Theorem 4.7, then n is finite. Hence
T'I(J, n) = TI(J, n) is the space of ordinary Tchebycheff splines on J with
simple knots in J n n. Since f is continuous on [c, d], by the theory of
Property A [13] as applied to the ECT system and Td J, n), we conclude
that a best approximation to flJ from TI(J, n) is unique. Then the result
follows as in Theorem 5.7. If S is finite, then again n is finite and the above
arguments establish the result. The last statement of the theorem also
follows as above. I

6. ApPROXIMATION BY GENERALIZED MONOTONE AND CONVEX FUNCTIONS

In this section we consider the problem of finding a best LI'-approxi­
mation to f from K".I'(S) for n = 1 and 2. We derive stronger characteri­
zation theorems than those in Section 4 and establish the uniqueness of
LI-approximation. A function k in K 1 (K" with n = I) is called a
generalized monotone (nondecreasing) function and is defined by k( x)/
\I'o(x)~k(y)/woCv) if x~y as may be easily verified. The functions in K 2

are called generalized convex functions. Recall that E- and E+ are defined
by (2.5) and (4.1), respectively, and Sand Z J are defined in Section 5.

THEOREM 6.1. Let 1 < p <x, n = 1 or 2,/ E LI'\K".,,( S), and g E K".,,( S).
If n = 2, assume additionally that Z /( e[2]) c S. Then the following jiwr
statements are equivalent.

(1) g is the best LI'-approximation to f from K".) S).

(2) e[i](b)=Ofor 1~i~n, (-l)"e["](t)~Ofor tES, and, on each

component J of E -, g IJ E V" IJ.

(3) e[i](b)=Ofor l~i~n, (-l)"e["](t)~Ofor tES, and, on each
component J of E-, g IJ is the best LI'( J)-approximation to f IJ from v" 11.

(4) g = f a.e. on 1\( E u E +), and, on each component J of E" or
E+, glJ is the best Lp(J)-approximation to flJ from each of V"IJ
and K".,,( J, S).

Proof We first establish the theorem for n = 1. The equivalence of ( I )
and (2) is a restatement of Theorem 2.6 for 11 = 1. We simultaneously show
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that (1) or (2) implies (3) and (4). Let g be the best approximation toj.
If J = (e, d) is a component of E-, then by (2), gl J EVil J. If J is a compo­
nent of E+, then, since e[I]~O on S by (2), we must have JcI\S=S'.

Hence ilK. I(J) = ilK. I( S/) = O. Thus g = (W'o on J for some iX, and g IJ E VI IJ.
Now, let J = (c, d) be a component of E or E+. Then by the definition
of E- and E+, we have el'](e)=e['](d)=O. Hence, by Lemma 4.4 with
12 = I, we conclude that g IJ is the best approximation to f IJ from
K"p(J,S), But since glJE V1IJcKl.p(J,S), we find that glJ is also the
best approximation to f IJ from VI 11. By Theorem 4,6( 5), we have g = f
a.e. on I\B, By Lemma 4,1(5), B = E- U E+ U Bo, where Bo is a countable
set and hence its Lebesgue measure is zero. It follows that g = f a.e. on
I\(E- u E+). Thus (3) and (4) are established. Clearly, (3) implies (2).
Now we may show (4) implies (1) by a proof similar to the one used to
establish that statement (2) implies statement (1) in Theorem 4.6. Thus, the
four statements are equivalent for n = I.

Now let n = 2 and J = (c, d) be a component of E or E+. By the defini­
tions of E- and E+ we conclude that e[2](c)=e[2](d) =0. By Lemma 5.3
with n=2 we have Z/(e[2 J)cZ/(e[I]). Hence e['](c)=e['](d)=O. Now,
by Lemma 4.4 with n = 2 we find that g IJ is the best approximation to I
from K 2.1'( J, S). The rest of the proof is similar to the case n = I. I

The following analogue of Theorem 6.1 for p = 1 may be proved by
similar methods.

THEOREM 6.2. Let p=l, n=l or 2, fEL1\K". I(S), andgEKI,I(S), If
n = 2, assume additionally that Z/(e[2 J c S. Then g is a best LI-approxima­
tion to f Fom K".,(S) if and only if there exists eED(f-g) .I'atisr.ving
one of the statements (2), (3), and (4) of Theorem 6.1 with "the best
Lp(J)-approximation" in those statements replaced by "a best L I (J)-approxi­
mation," p replaced by 1, and the sets E- and E+ defined by using this e.

We remark that in Theorem 6.1 another equivalent statement (4') may
be obtained from statement (4) by replacing its part "on each component
J of E- or E+, glJ is the best L)J)-approximation to flJ from
K n , p( J, S)" by the following: "If J = (c, d), where e < d are any two zeros of
e[n) (and, in particular, if J is a component of E- or E+), then glJ is the
best Lp(J)-approximation to IIJ from K".I'(J, S)." This may be justified by
Lemma 4.4. The part of (4) pertaining to the best L p ( J)-approximation
from Vn IJ remains unchanged. Similar remarks apply to Theorem 6.2 also.

Next we investigate the continuity properties of a best Lp-approximation
from K I, 1'( S). Recall that the functions in K n , 1'( S), n ~ 2, are continuous on
I. We observe that if g is a generalized monotone function then, by
Proposition 2.2( 2), g( x -) and g( x +) exist for each x in I. Given x E I and
an open interval J c I we write J -> x and say "J shrinks to x" whenever
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J=(X-J 1,X+J2) with JI~O, J2~0 and 15 1 +152>0 (so that xEcl(J))
and 15 1 10, 02 10 [1]. We denote by intIS) and bd(S), the interior and
boundary of S. In the following A is the Lebesgue measure on I.

THEOREM 6.3. Let I~p<C(), fEL,,\K1.,,(S), and g be a best
L,,-approximation to f from K1.,,(S). Then the following holds.

(I) g is continuous at each x ES' = I\S. If XES and e[ 1J( x) > 0, then
g is continuous at x.

(2) Let xEint(S), e[IJ(x)=O, and Pel he any measurahle set such
that

1,( P n J)/),( J)" ---+ 0, as J ---+ x. (6.1 )

If P' = I\P; then

Iimess inf{.f(t): tEP', tix}

~ g( x - )~ g( x +) ~ lim ess sup{.f(t): t E P', t 1x}. (6.2)

Remark. Condition (6.1) implies A(P' n J)/A(J) ---+ I, hence, III (6.2)
there exist t E p' with t i x and t 1x.)

Proof ( I) Suppose that g is discontinuous at x E I. Then g( x + ) >
g( x -). The Lebesgue-Stieltjes measure fig. I generated by g(t + )lIi'n(t) coin­
cides with that generated by g(t)/Ii'o(t), and ,lig.l{X} =(g(x+)-g(x-))/
wo(x»O [12, Proposition 3.9]. Hence XES. £fe[IJ(x»O for some xE/,

then x EE - and, by Theorem 6.1 (2), there exists :x such that g = :xwo on
(x - J, x + J) for some J > O. Hence g is continuous at x.

(2) We outline the proof. If (} denotes the right side of (6.2), we
assume (} < g( x +). Then show that e[ 1]( s) < 0 for all s sufficiently close to
x. By Theorem 6.1(2), sE/\S=S'. Hence x¢int(S), a contradiction. Thus
g(x+) ~ O. I

We say that f on I is p-approximately continuous at x E I if there exists
a measurable set Pel such that (6.1) holds and f IP' is continuous where
P' = I\P. Note that I-approximate continuity is identical to the well
known approximate continuity [I]. Clearly, p-approximate continuity for
p > I implies I-approximate continuity. If f is continuous on I, then, by
taking P = 0 in (6.1), we see that f is p-approximately continuous.
Theorem 6.3 then at one gives us the following.

THEOREM 6.4. Assume the hypothesis of Theorem 6.3. rff is p-approxi­
mately continuous on intI S), then g is continuous on I\bd( S). In particular,
this conclusion holds iff is continuous on inti S).
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The following example show that the results of the above theorem
cannot be strengthened. Let 1= (0, I), S = { 1/2}, p = 2, W o = I, and
f(x)=x on I. Then Ku(S) is the set of nondecreasing functions which are
constant on (0, 1/2) and (1/2, I) with a possible jump at 1/2. Then, g, the
best L 2-approximation to ffrom Ku(S) is given by g(.>:) = 1/4, 0 < x < 1/2
and g(x) = 3/4, 1/2:( x < 1.

For the problem of unconstrained L]-approximation by nondecreasing
functions, [16] shows that g is continuous iff is approximately continuous
(their proof holds only for p = I). We are motivated by their result and
proof to introduce the condition (6.1) and p-approximate continuity so
that one single result (6.2) could be obtained for all 1:( p <.:x, under
uniform assumptions in our more general framework.

We next establish the uniqueness of best approximation from K".I(S),
n = 1,2.

THEOREM 6.5. Let n = I or 2, and f he continuous on [a, b]. If n = 2,
assume additionally that Z,(e[2]) c S. Then a best LI-approximation to f
from K". I (S), if it exists, is unique.

Proof Let J be any component of E- or E+ as in statement (3) of
Theorem 6.2. Since f is continuous on el(}), by the theory of Property A
[13] applied to V" I} as in Theorem 5.8, a best approximation to f I} from
V" I} is unique. Then the required result follows by statement (3) of
Theorem 6.2 in the same way as Theorems 5.7 and 5.8 follow from
statement (5) of Theorem 4.7. I
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